版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年河南省內(nèi)黃一中高三下學(xué)期期末調(diào)研測試數(shù)學(xué)試題文試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.二項式的展開式中,常數(shù)項為()A. B.80 C. D.1602.設(shè)m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,3.設(shè)為自然對數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.4.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為()A. B. C. D.5.已知函數(shù)()的最小值為0,則()A. B. C. D.6.函數(shù)()的圖象的大致形狀是()A. B. C. D.7.已知,則的值等于()A. B. C. D.8.已知為圓的一條直徑,點的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.9.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.10.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.4511.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.28212.把函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實數(shù)的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)為_________.14.連續(xù)2次拋擲一顆質(zhì)地均勻的骰子(六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點數(shù),則事件“點數(shù)之積是3的倍數(shù)”的概率為____.15.已知不等式的解集不是空集,則實數(shù)的取值范圍是;若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是___16.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實數(shù)λ的值是__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系.已知點的直角坐標(biāo)為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.18.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設(shè)分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.19.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.20.(12分)在直角坐標(biāo)系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.(1)求曲線的方程;(2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.21.(12分)已知等差數(shù)列和等比數(shù)列的各項均為整數(shù),它們的前項和分別為,且,.(1)求數(shù)列,的通項公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項?若存在,求出所有滿足條件的的值;若不存在,說明理由.22.(10分)已知橢圓,直線不過原點且不平行于坐標(biāo)軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
求出二項式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項式展開式的通式為,令,解得,則常數(shù)項為.故選:A.本題考查二項式定理指定項的求解,關(guān)鍵是熟練應(yīng)用二項展開式的通式,是基礎(chǔ)題.2.B【解析】
根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當(dāng),,時,由于不在平面內(nèi),故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當(dāng),時,可能含于平面,故無法得出.對于D選項,當(dāng),時,無法得出.綜上所述,的一個充分條件是“,”故選:B本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.3.D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D本小題主要考查函數(shù)值的計算,屬于基礎(chǔ)題.4.B【解析】
由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標(biāo)準(zhǔn)方程為:y2=2x.故選B.本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.5.C【解析】
設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.6.C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.識圖常用的方法(1)定性分析法:通過對問題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題.7.A【解析】
由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A本題考查了學(xué)生對二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡單題8.D【解析】
首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.9.D【解析】
因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.10.B【解析】
計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.11.B【解析】
將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題12.A【解析】
先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對稱性可求實數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)解析式為,故.令,,解得,.因為為偶函數(shù),故直線為其圖象的對稱軸,令,,故,,因為,故,當(dāng)時,.故選:A.本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應(yīng)的解析式為,另外,如果為正弦型函數(shù)圖象的對稱軸,則有,本題屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
變換,根據(jù)二項式定理計算得到答案.【詳解】的展開式的通項為:,,取和,計算得到系數(shù)為:.故答案為:.本題考查了二項式定理,意在考查學(xué)生的計算能力和應(yīng)用能力.14.【解析】總事件數(shù)為,目標(biāo)事件:當(dāng)?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當(dāng)?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標(biāo)事件共20中,所以。15.【解析】
利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當(dāng)時滿足題意,解得或所以答案為本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時的分類討論化簡16.【解析】
根據(jù)平面向量的數(shù)量積運算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(shè)(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.本題考查了單位向量和平面向量數(shù)量積的運算問題,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1):,:;(2)【解析】
(1)根據(jù)點斜式寫出直線的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得.設(shè),對應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.18.(1)(2)是定值,詳見解析【解析】
(1)根據(jù)長軸長為,離心率,則有求解.(2)設(shè),則,直線,令得,,則,直線,令,得,則,再根據(jù)求解.【詳解】(1)依題意得,解得,則橢圓的方程.(2)設(shè),則,直線,令得,,則,直線,令,得,則,.本題主要考查橢圓的方程及直線與橢圓的位置關(guān)系,還考查了平面幾何知識和運算求解的能力,屬于中檔題.19.(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標(biāo)系,求平面的一個法向量與平面的一個法向量,再利用向量數(shù)量積運算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因為,所以平面,又平面,所以.(2)設(shè),,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點,為的中點,所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標(biāo)系,,,由平面幾何知識,得.則,,,,所以,,.設(shè)平面的法向量為,由,可得,令,則,,所以.同理,平面的一個法向量為.設(shè)平面與平面所成角為,則,所以.本題考查了線面垂直的判定定理及二面角的平面角的求法,重點考查了空間向量的應(yīng)用,屬中檔題.20.(1)(2)存在;常數(shù),定值【解析】
(1)設(shè)出的坐標(biāo),利用以及,求得曲線的方程.(2)當(dāng)直線的斜率存在時,設(shè)出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關(guān)系,結(jié)合以及為定值,求得的值.當(dāng)直線的斜率不存在時,驗證.由此得到存在常數(shù),且定值.【詳解】(1)解析:(1)設(shè),,由題可得,解得又,即,消去得:(2)當(dāng)直線的斜率存在時,設(shè)直線的方程為設(shè),由可得:由點到的距離為定值可得(為常數(shù))即得:即,又為定值時,,此時,且符合當(dāng)直線的斜率不存在時,設(shè)直線方程為由題可得,時,,經(jīng)檢驗,符合條件綜上可知,存在常數(shù),且定值本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關(guān)系,考查運算求解能力,考查橢圓中的定值問題,屬于難題.21.(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接計算即可;(2)利用錯位相減法計算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因為,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由(1)可得,,所以.因為是數(shù)列或中的一項,所以,所以,因為,所以,又,則或.當(dāng)時,有,即,令.則.當(dāng)時,;當(dāng)時,,即.由,知無整數(shù)解.當(dāng)時,有,即存在使得是數(shù)列中的第2項,故存在正整數(shù),使得是數(shù)列中的項.本題考查數(shù)列的綜合應(yīng)用,涉及到等差、等比數(shù)列的通項,錯位相減法求數(shù)列的前n項和,數(shù)列中的存在性問題,是一道較為綜合的題.22.(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點的坐標(biāo),第二步再整理點的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設(shè)點的橫坐標(biāo)為.∴由得,即將點的坐標(biāo)代入直線的方程得,因此.四邊形為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 阜陽2025年安徽阜陽界首市教育系統(tǒng)引進(jìn)急需緊缺專業(yè)人才148人筆試歷年參考題庫附帶答案詳解
- 遼寧2025年遼寧現(xiàn)代服務(wù)職業(yè)技術(shù)學(xué)院招聘筆試歷年參考題庫附帶答案詳解
- 紅河云南紅河開遠(yuǎn)市生態(tài)環(huán)境保護(hù)綜合行政執(zhí)法大隊招聘編外人員筆試歷年參考題庫附帶答案詳解
- 湖北2025年湖北省就業(yè)援疆事業(yè)單位面向新疆博州-兵團(tuán)第五師籍畢業(yè)生招聘28人筆試歷年參考題庫附帶答案詳解
- 江門廣東江門市社會福利院招聘護(hù)理員(編外)15人筆試歷年參考題庫附帶答案詳解
- 昆明2025年云南昆明市官渡區(qū)云南大學(xué)附屬會展學(xué)校聘任制教師招聘筆試歷年參考題庫附帶答案詳解
- 廣西2025年廣西醫(yī)科大學(xué)附屬小學(xué)招聘4人筆試歷年參考題庫附帶答案詳解
- 安陽2025年河南安陽市龍安區(qū)選聘教師67人筆試歷年參考題庫附帶答案詳解
- 十堰2025年湖北十堰市鄖西縣事業(yè)單位考聘三支一扶服務(wù)期滿人員筆試歷年參考題庫附帶答案詳解
- 保定2025年河北雄安新區(qū)容東管委會容西管委會招聘社區(qū)工作者123人筆試歷年參考題庫附帶答案詳解
- 2025下半年中學(xué)教師資格證英語《學(xué)科知識與教學(xué)能力》真題卷(帶答案)
- 仁愛英語七年級上英語教學(xué)反思
- 一年級數(shù)學(xué)加減法口算題每日一練(25套打印版)
- 車輛使用協(xié)議合同2025年
- 建筑材料運輸及售后服務(wù)方案
- 江蘇省南京市2025屆高三學(xué)情調(diào)研試卷語文
- 施工電梯基礎(chǔ)施工方案-北京大學(xué)第一醫(yī)院城南院區(qū)工程 V1
- 人教版三年級上冊豎式計算練習(xí)300題及答案
- 心臟血管檢查課件
- 運用PDCA循環(huán)管理提高手衛(wèi)生依從性課件
- 二手房定金合同(2023版)正規(guī)范本(通用版)1
評論
0/150
提交評論