版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人工智能前沿專題第0頁-大語言模型基礎(chǔ)導(dǎo)論TheFrontierTopicsinArtificialIntelligence-FoundationsofLargeLanguageModels&GenerativePretrainedTransformerHonggangZHANG張宏綱CityUniversityofMacauJanuary-June,2025,Macau112A.AllYouInformation2017),Vaswani,N.Shazeer,etal.,“AttentionIsNeed,”31stA.AllYouInformation2017),ProcessingSystems(NIPSCA,USA,2017.---------------------------------------》4A.Vaswani,N.Shazeer,etal.,“AttentionIsAllYouNeed,”31stConferenceonNeuralInformationProcessingSystems(NIPS2017),CA,USA,2017.66“ScalingLawsforNeuralLanguageModels”9 ③RLHF-ReinforcementTransformerBlock/LayerQRepresentativeLLMsandtheirKeyParametersSurvey4040414242Application-basedtaxonomyof43ComprehensiveSurveyonTransformer444647484922website.ThankstothDeepSeek-V3/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdfDeepSeek-V3/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdfDeepSeek-V3TechniqueReport/deepseek-ai/DeepSeek-R1/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf/deepseek-ai/DeepSeek-AugmentedGeneration(33nnAgentsnn4nIEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS,VOL.34,NO.8,AUGUST2023nIEEETRANSACTIONSONAssociationfor5narXiv:2306.00802v1[stat.ML]1Jun2023narXiv:2306.00802v1[stat.ML]1Jun2023website.Thankstotheauthors.website.Thankstotheauthors.6AlgorithmsandData-DrivennarXiv:2304.08818v1[cs.CV]18Apr20237GPT(NetGPT)andotherNetwork-basedGenerativePretrainedTransformer&LLMsCloudLLMsNetGPTLarge-scaleLanguage/ImageDataLarge-scaleKnowledgeGraphFullyOffloadingLLMsfromDividingLLMsbetweenEstablishingLLMsSynergyCloudtoEdgeCloudandEdgewithCloudandEdgeCollaboration-ModelingArchitectureandMechanismsYuxuanChen,RongpengLi,Z.Zhao,ChegnhuiPeng,JianjunWu,EkramHossainandHonggangZhang,“NetGPT:AnAI-NativeNetworkArchitectureforProvisioningBeyondPersonalizedGenerativeServices”,IEEENetwork,March2024.Low-rankadaptation(LoRA):lightweightfinetuningforLLMsThemainideaistoaddabypassnextLow-rankadaptation(LoRA):lightweightfinetuningforLLMsThemainideaistoaddabypassnexttothemodelweight,withsmallinternalrankr,andreducethenumberoftrainableparametersfordownstreamtasksRegardingLLaMA-7B,therequiredVRAMdecreasefrom112GBto28GB,forportabledevicesrrdinweightdinParametersTransformerLevel/HeadGPT-2-base768GPT-2-Medium345M24/16GPT-2-Large774M36/24GPT-2-XL48/32ParametersTransformerLevel/HeadLLaMA-7B6.7B32/324096LLaMA-13B40/405120LLaMA-33B32.5B60/526656LLaMA-65B65.2B80/648192models,"arXivpreprintarXiv:2106.09685(2021).-ModelingArchitectureandMechanisms(cont.)LLaMA-7B-WorkingMechanismsandFlowPathsCloudLLMs-RepresentativeExamplesandPerformanceCloudLLMsCloudLLMs-EnablingIntent-DrivenNetworksandServicesNetGPTbyCloud,Edge&UserCoweleverageasample-efficiendeterminethesuitableYuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.NetGPTbyCloud,Edge&UserCoOverviewoftheLLMsplittingarchitectureinwirelesschannel,withlayer3designatedastheexamplesplittingpoint.Weusethe32-layerLLaMA2-7Bmodelasanexample.Underdifferentsplittingpointsoftransformerblocks,verifyhowchannelnoisewouldaffecttheLLMinferenceperformanceYuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.196YuxuanChen,RongpengLi,XiaoxueYu,ZhifengZhao,andHonggangZhang,“AdaptiveLayerSplittingforWirelessLLMInferenceinEdgeComputing:AModel-BasedReinforcementLearningApproach,”FrontiersofInformationTechnology&ElectronicEngineering(FITEE),November2024.197ComparisonoftrainingperformancesfordifferentRLapproachesunderCaseL,CaseH,andCaseACaseL:Lowpacketlossprobability0~0.1andaninitialsplittingpointneartheinput(layers1-5)CaseH:Highpacketlossprobability0.1~0.3andaninitialsplittingpointfarfromtheinput(layers6-10)CaseA:Completerangeofpacketlossprobability0~0.3andinitialsplittingpoints(layers1-10)ElectronicEngineerThe“TenIssuesofNetGPT”Announcedby6GANA(6GAllianceof6GnetworkAI-relatedtechnologies,stand200201 The“TenIssuesofNetGPT”Announced 202The“TenIssuesofNetGPT”Announcedby6GANA(6GAllianceof?Issue7:SecurityandPrivacyofNetGPT?Issue8:DataGovernanceofNetGPT?Issue9:EvaluationandMetricsofNetGPTwithServiceLevelAgreement203The“TenIssuesofNetGPT”Announcedby6GANA204WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6G205WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm206206WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm207207WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm208208WenTong,”A-RAN,A-COREandA-UE,“EuCNC&6GSumm209209Belgrade,Serbia,25-210Serbia,25-27211TheVisionandFrameworkforNetwork-NativeAIand212arXiv:2103.02823,March2021.212Network-NativeAIandNetG≤—≤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年河北邢臺市人民醫(yī)院公開招聘編外工作人員41名備考筆試試題及答案解析
- 2026年春季新疆巴音郭楞州若羌縣征兵參考考試題庫及答案解析
- 2025廣西北海市高德糧庫有限公司招聘會計主管1人備考考試試題及答案解析
- 2025井岡山葛田鄉(xiāng)招聘公益性崗位工作人員模擬筆試試題及答案解析
- 2026遼寧本溪市教育系統(tǒng)冬季“名校優(yōu)生”引進急需 緊缺人才4人(本溪市第一中學(xué))參考考試試題及答案解析
- 2025重慶市黔江區(qū)婦幼保健院招聘編外1人考試備考題庫及答案解析
- 2025年云南建投第一建設(shè)有限公司社會招聘(1人)模擬筆試試題及答案解析
- 2025年南平浦城縣醫(yī)療單位醫(yī)療類儲備人才引進考試備考題庫及答案解析
- 2025人民網(wǎng)寧夏分公司招聘媒介顧問2人備考筆試題庫及答案解析
- 2026年淮北市第一中學(xué)公開引進學(xué)科競賽教練員(合肥站)6名參考筆試題庫附答案解析
- 新媒體賬號管理制度單位(3篇)
- 血透失衡綜合征的護理課件
- 2025年甘肅省張掖市培黎職業(yè)學(xué)院招聘非事業(yè)編制工作人員14人(公共基礎(chǔ)知識)測試題附答案解析
- 2025年服飾時尚行業(yè)數(shù)字化轉(zhuǎn)型研究報告
- 機關(guān)單位績效考核系統(tǒng)建設(shè)方案
- 物流搬運工合同范本
- 2025年心肺復(fù)蘇指南課件
- 2025年湖北省宜昌市新質(zhì)生產(chǎn)力發(fā)展研判:聚焦“3+2”主導(dǎo)產(chǎn)業(yè)打造長江經(jīng)濟帶新質(zhì)生產(chǎn)力發(fā)展示范區(qū)圖
- 2025 小學(xué)二年級數(shù)學(xué)上冊解決問題審題方法課件
- 老年患者術(shù)后加速康復(fù)外科(ERAS)實施方案
- 2024-2025學(xué)年廣州市越秀區(qū)八年級上學(xué)期期末歷史試卷(含答案)
評論
0/150
提交評論