版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年湖南省懷化市中方縣第二中學(xué)高三數(shù)學(xué)試題一輪復(fù)習(xí)典型題專項(xiàng)訓(xùn)練考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知當(dāng),,時,,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定2.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.3.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④4.已知半徑為2的球內(nèi)有一個內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.5.已知是虛數(shù)單位,若,則()A. B.2 C. D.106.函數(shù)的大致圖象為A. B.C. D.7.已知拋物線C:,過焦點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn)(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.38.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則9.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,10.將函數(shù)的圖象向右平移個周期后,所得圖象關(guān)于軸對稱,則的最小正值是()A. B. C. D.11.的內(nèi)角的對邊分別為,若,則內(nèi)角()A. B. C. D.12.記為等差數(shù)列的前項(xiàng)和.若,,則()A.5 B.3 C.-12 D.-13二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個算法流程圖,若輸出的實(shí)數(shù)的值為,則輸入的實(shí)數(shù)的值為______________.14.如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為________.15.已知雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)在拋物線上,則實(shí)數(shù)的值為___________.16.已知,滿足約束條件,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項(xiàng)和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)已知,求數(shù)列的前n項(xiàng)和.18.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時費(fèi)力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計(jì)辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計(jì)21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87919.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù),.(1)若曲線在點(diǎn)處的切線與直線平行,求的值;(2)若,問函數(shù)有無極值點(diǎn)?若有,請求出極值點(diǎn)的個數(shù);若沒有,請說明理由.20.(12分)已知橢圓:的離心率為,直線:與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點(diǎn),過點(diǎn)的直線交橢圓于,兩點(diǎn),直線,分別交直線于,兩點(diǎn).(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點(diǎn)?若是,寫出所有定點(diǎn)的坐標(biāo);若不是,請說明理由.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點(diǎn),為中點(diǎn).(1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;(2)若,求的值.22.(10分)在中,.(1)求的值;(2)點(diǎn)為邊上的動點(diǎn)(不與點(diǎn)重合),設(shè),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.2.B【解析】
由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計(jì)算側(cè)面積時需要將這個曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和.3.D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)?,所以平面,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因?yàn)?,所以平面,所以,又,所以平面,所以,因?yàn)?,所以顯然與不可能垂直,故④正確.故選:D本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.4.D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).5.C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)計(jì)算即可.【詳解】因?yàn)?,所以,,故選:C本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.6.A【解析】
因?yàn)?,所以函?shù)是偶函數(shù),排除B、D,又,排除C,故選A.7.B【解析】
設(shè)直線的方程為代入拋物線方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因?yàn)?,所以,得,所以,即,,所?故選:B.本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計(jì)算能力,屬于中檔題.8.D【解析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項(xiàng)A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.9.D【解析】
根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項(xiàng).【詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.10.D【解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因?yàn)楹瘮?shù)的圖象關(guān)于軸對稱,所以,即,所以當(dāng)時,有最小正值為.故選:D本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.11.C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.12.B【解析】
由題得,,解得,,計(jì)算可得.【詳解】,,,,解得,,.故選:B本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)程序框圖得到程序功能,結(jié)合分段函數(shù)進(jìn)行計(jì)算即可.【詳解】解:程序的功能是計(jì)算,若輸出的實(shí)數(shù)的值為,則當(dāng)時,由得,當(dāng)時,由,此時無解.故答案為:.本題主要考查程序框圖的識別和判斷,理解程序功能是解決本題的關(guān)鍵,屬于基礎(chǔ)題.14.【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為.故答案為:.本題考查了根據(jù)三視圖求簡單組合體的體積應(yīng)用問題,是基礎(chǔ)題.15.【解析】
求出雙曲線的漸近線方程,右準(zhǔn)線方程,得到交點(diǎn)坐標(biāo)代入拋物線方程求解即可.【詳解】解:雙曲線的右準(zhǔn)線,漸近線,雙曲線的右準(zhǔn)線與漸近線的交點(diǎn),交點(diǎn)在拋物線上,可得:,解得.故答案為.本題考查雙曲線的簡單性質(zhì)以及拋物線的簡單性質(zhì)的應(yīng)用,是基本知識的考查,屬于基礎(chǔ)題.16.【解析】
根據(jù)題意,畫出可行域,將目標(biāo)函數(shù)看成可行域內(nèi)的點(diǎn)與原點(diǎn)距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當(dāng),時,的最大值為.故答案為:9.本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),();(2).【解析】
(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項(xiàng)相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當(dāng)時,.②當(dāng)時,.此題等差數(shù)列的通項(xiàng)公式的求解,裂項(xiàng)相消求和等知識點(diǎn),考查了化歸和轉(zhuǎn)化思想,屬于一般性題目.18.(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】
(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計(jì)算出的觀測值,即可進(jìn)行判斷;(2)先計(jì)算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計(jì)算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因?yàn)闃颖緮?shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表流動人員非流動人員總計(jì)辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計(jì)21090300結(jié)合列聯(lián)表可算得.有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).(2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.本題考查獨(dú)立性檢驗(yàn)中的計(jì)算,以及離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望,涉及分層抽樣,屬綜合性中檔題.19.(1)(2)沒有,理由見解析【解析】
(1)求導(dǎo),研究函數(shù)在x=0處的導(dǎo)數(shù),等于切線斜率,即得解;(2)對f(x)求導(dǎo),構(gòu)造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點(diǎn)處的切線與直線平行,∴切線的斜率為,解得.(2)當(dāng)時,,,設(shè),則,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,又函數(shù),故恒成立,∴函數(shù)在定義域內(nèi)單調(diào)遞增,函數(shù)不存在極值點(diǎn).本題考查了導(dǎo)數(shù)在切線問題和函數(shù)極值問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20.(1);(2)是,定點(diǎn)坐標(biāo)為或【解析】
(1)根據(jù)相切得到,根據(jù)離心率得到,得到橢圓方程.(2)設(shè)直線的方程為,點(diǎn)、的坐標(biāo)分別為,,聯(lián)立方程得到,,計(jì)算點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,圓的方程可化為,得到答案.【詳解】(1)根據(jù)題意:,因?yàn)?,所以,所以橢圓的方程為.(2)設(shè)直線的方程為,點(diǎn)、的坐標(biāo)分別為,,把直線的方程代入橢圓方程化簡得到,所以,,所以,,因?yàn)橹本€的斜率,所以直線的方程,所以點(diǎn)的坐標(biāo)為,同理,點(diǎn)的坐標(biāo)為,故以為直徑的圓的方程為,又因?yàn)?,,所以圓的方程可化為,令,則有,所以定點(diǎn)坐標(biāo)為或.本題考查了橢圓方程,圓過定點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21.(1),;(2)或【解析】
(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標(biāo)方程,再由,,可得點(diǎn)的軌跡的極坐標(biāo)方程;(2)將曲線極坐標(biāo)方程求,與直線極坐標(biāo)方程聯(lián)立,消去,得到關(guān)于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標(biāo)方程為,圓的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院醫(yī)療護(hù)理服務(wù)質(zhì)量制度
- 企業(yè)員工培訓(xùn)管理制度
- 會議主題確定與方向引導(dǎo)制度
- 2026年哲學(xué)專業(yè)知識競賽試題及答案詳解
- 2026年健康生活指南測試題目
- 2026年食品專業(yè)碩士考試預(yù)測模擬卷
- 2026年陽光房搭建合同
- 2026年新版天體測量協(xié)議
- 2024年趙縣幼兒園教師招教考試備考題庫含答案解析(奪冠)
- 2024年浮山縣招教考試備考題庫及答案解析(奪冠)
- 《筑牢安全防線 歡度平安寒假》2026年寒假安全教育主題班會課件
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及答案詳解(新)
- 信息技術(shù)應(yīng)用創(chuàng)新軟件適配測評技術(shù)規(guī)范
- 市政雨污水管排水工程監(jiān)理實(shí)施細(xì)則
- 鋁錠居間合同樣本
- 新概念第一冊雙課聽力文本全(英文翻譯)
- 三高知識課件
- 租賃手機(jī)籌資計(jì)劃書
- 電子束直寫技術(shù)講座
- 項(xiàng)目監(jiān)理人員廉潔從業(yè)承諾書
- 短篇文言文翻譯
評論
0/150
提交評論