人教新版八年級數(shù)學(xué)上冊教案(12篇)_第1頁
人教新版八年級數(shù)學(xué)上冊教案(12篇)_第2頁
人教新版八年級數(shù)學(xué)上冊教案(12篇)_第3頁
人教新版八年級數(shù)學(xué)上冊教案(12篇)_第4頁
人教新版八年級數(shù)學(xué)上冊教案(12篇)_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Word文檔人教新版八年級數(shù)學(xué)上冊教案(優(yōu)秀12篇)數(shù)學(xué)八年級上冊教案篇一

第三環(huán)節(jié):勾股定理的簡單應(yīng)用

內(nèi)容:

例題如圖所示,一棵大樹在一次強烈臺風(fēng)中于離地面10m處折斷倒下,樹頂落在離樹根24m處。大樹在折斷之前高多少?

(教師板演解題過程)

練習(xí):

1.基礎(chǔ)鞏固練習(xí):

求下列圖形中未知正方形的面積或未知邊的長度(口答):

2.生活中的應(yīng)用:

小明媽媽買了一部29in(74cm)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58cm長和46cm寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?你能解釋這是為什么嗎?

意圖:練習(xí)第1題是勾股定理的直接運用,意在鞏固基礎(chǔ)知識。

效果:例題和練習(xí)第2題是實際應(yīng)用問題,體現(xiàn)了數(shù)學(xué)來源于生活,又服務(wù)于生活,意在培養(yǎng)學(xué)生“用數(shù)學(xué)”的意識。運用數(shù)學(xué)知識解決實際問題是數(shù)學(xué)教學(xué)的重要內(nèi)容。

第四環(huán)節(jié):課堂小結(jié)

內(nèi)容:

教師提問:

1.這一節(jié)課我們一起學(xué)習(xí)了哪些知識和思想方法?

2.對這些內(nèi)容你有什么體會?與同伴進行交流。

在學(xué)生自由發(fā)言的基礎(chǔ)上,師生共同總結(jié):

1.知識:勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,,分別表示直角三角形的兩直角邊和斜邊,那么.

2.方法:(1)觀察—探索—猜想—驗證—歸納—應(yīng)用;

(2)“割、補、拼、接”法。

3.思想:(1)特殊—一般—特殊;

(2)數(shù)形結(jié)合思想。

意圖:鼓勵學(xué)生積極大膽發(fā)言,可增進師生、生生之間的交流、互動。

效果:通過暢談收獲和體會,意在培養(yǎng)學(xué)生口頭表達和交流的能力,增強不斷反思總結(jié)的意識。

第五環(huán)節(jié):布置作業(yè)

內(nèi)容:布置作業(yè):1.教科書習(xí)題1.1.

2.觀察下圖,探究圖中三角形的三邊長是否滿足?

八年級上冊數(shù)學(xué)教案篇二

第11章平面直角坐標(biāo)系

11。1平面上點的坐標(biāo)

第1課時平面上點的坐標(biāo)(一)

教學(xué)目標(biāo)

【知識與技能】

1。知道有序?qū)崝?shù)對的概念,認識平面直角坐標(biāo)系的相關(guān)知識,如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點等。

2。理解坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對的一一對應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點的坐標(biāo)。已知點的坐標(biāo),能在平面直角坐標(biāo)系中描出點。

3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點的位置。

【過程與方法】

1。結(jié)合現(xiàn)實生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標(biāo)系的作用。

2。學(xué)會用有序?qū)崝?shù)對和平面直角坐標(biāo)系中的點來描述物體的位置。

【情感、態(tài)度與價值觀】

通過引入有序?qū)崝?shù)對、平面直角坐標(biāo)系讓學(xué)生體會到現(xiàn)實生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價值。

重點難點

【重點】

認識平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點。

【難點】

理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。

教學(xué)過程

一、創(chuàng)設(shè)情境、導(dǎo)入新知

師:如果讓你描述自己在班級中的位置,你會怎么說?

生甲:我在第3排第5個座位。

生乙:我在第4行第7列。

師:很好!我們買的電影票上寫著幾排幾號,是對應(yīng)某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。

二、合作探究,獲取新知

師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體

的位置,這兩個數(shù)量我們可以用一個實數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

生:3排5號。

師:對,它們對應(yīng)的不是同一個位置,所以要求表示物體位置的這個實數(shù)對是有序的。誰來說說我們應(yīng)該怎樣表示一個物體的位置呢?

生:用一個有序的實數(shù)對來表示。

師:對。我們學(xué)過實數(shù)與數(shù)軸上的點是一一對應(yīng)的,有序?qū)崝?shù)對是不是也可以和一個點對應(yīng)起來呢?

生:可以。

教師在黑板上作圖:

我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構(gòu)成了平面直角坐標(biāo)系,這個平面叫做坐標(biāo)平面。

師:有了平面直角坐標(biāo)系,平面內(nèi)的點就可以用一個有序?qū)崝?shù)對來表示了。現(xiàn)在請大家自己動手畫一個平面直角坐標(biāo)系。

學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯誤。

教師邊操作邊講解:

如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點P的坐標(biāo)。在x軸上的點,過這點向y軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點,過這點向x軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點的橫坐標(biāo)和縱坐標(biāo)都是0,即原點的坐標(biāo)是(0,0)。

教師多媒體出示:

師:如圖,請同學(xué)們寫出A、B、C、D這四點的坐標(biāo)。

生甲:A點的坐標(biāo)是(—5,4)。

生乙:B點的坐標(biāo)是(—3,—2)。

生丙:C點的坐標(biāo)是(4,0)。

生?。篋點的坐標(biāo)是(0,—6)。

師:很好!我們已經(jīng)知道了怎樣寫出點的坐標(biāo),如果已知一點的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個點呢?

教師邊操作邊講解:

在x軸上找出橫坐標(biāo)是3的點,過這一點向x軸作垂線,橫坐標(biāo)是3的點都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點,過這一點向y軸作垂線,縱坐標(biāo)是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點。下面請同學(xué)們在方格紙中建立一個平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

學(xué)生動手作圖,教師巡視指導(dǎo)。

三、深入探究,層層推進

師:兩個坐標(biāo)軸把坐標(biāo)平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個象限。在同一象限內(nèi)的點,它們的橫坐標(biāo)的符號一樣嗎?縱坐標(biāo)的符號一樣嗎?

生:都一樣。

師:對,由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點的橫坐標(biāo)的符號為+,縱坐標(biāo)的符號也為+。你能說出其他象限內(nèi)點的坐標(biāo)的符號嗎?

生:能。第二象限內(nèi)的點的坐標(biāo)的符號為(—,+),第三象限內(nèi)的點的坐標(biāo)的符號為(—,—),第四象限內(nèi)的點的坐標(biāo)的符號為(+,—)。

師:很好!我們知道了一點所在的象限,就能知道它的坐標(biāo)的符號。同樣的,我們由點的坐標(biāo)也能知道它所在的象限。一點的坐標(biāo)的符號為(—,+),你能判斷這點是在哪個象限嗎?

生:能,在第二象限。

四、練習(xí)新知

師:現(xiàn)在我給出幾個點,你們判斷一下它們分別在哪個象限。

教師寫出四個點的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。

生甲:A點在第三象限。

生乙:B點在第四象限。

生丙:C點不屬于任何一個象限,它在y軸上。

生?。篋點不屬于任何一個象限,它在x軸上。

師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標(biāo)系,在上面描出這些點。

學(xué)生作圖,教師巡視,并予以指導(dǎo)。

五、課堂小結(jié)

師:本節(jié)課你學(xué)到了哪些新的知識?

生:認識了平面直角坐標(biāo)系,會寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能描點,知道了四個象限以及四個象限內(nèi)點的符號特征。

教師補充完善。

教學(xué)反思

物體位置的說法和表述物體的位置等問題,學(xué)生在實際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動中,主動學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實用性,增強了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

第2課時平面上點的坐標(biāo)(二)

教學(xué)目標(biāo)

【知識與技能】

進一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認識坐標(biāo)系中的圖形。

【過程與方法】

通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

【情感、態(tài)度與價值觀】

培養(yǎng)學(xué)生的合作交流意識和探索精神,體驗通過二維坐標(biāo)來描述圖形頂點,從而描述圖形的方法。

重點難點

【重點】

理解平面上的點連接成的圖形,計算圍成的圖形的面積。

【難點】

不規(guī)則圖形面積的求法。

教學(xué)過程

一、創(chuàng)設(shè)情境,導(dǎo)入新知

師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個點。

學(xué)生作圖。

教師邊操作邊講解:

二、合作探究,獲取新知

師:現(xiàn)在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

生甲:三角形。

生乙:直角三角形。

師:你能計算出它的面積嗎?

生:能。

教師挑一名學(xué)生:你是怎樣算的呢?

生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

師:很好!

教師邊操作邊講解:

大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

圖形?

學(xué)生完成操作后回答:平行四邊形。

師:你能計算它的面積嗎?

生:能。

教師挑一名學(xué)生:你是怎么計算的呢?

生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

教師多媒體出示下圖:

數(shù)學(xué)八年級上冊教案篇三

第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理

1.探究活動一

內(nèi)容:投影顯示如下地板磚示意圖,引導(dǎo)學(xué)生從面積角度觀察圖形:

問:你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關(guān)系嗎?

學(xué)生通過觀察,歸納發(fā)現(xiàn):

結(jié)論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

意圖:從觀察實際生活中常見的地板磚入手,讓學(xué)生感受到數(shù)學(xué)就在我們身邊。通過對特殊情形的探究得到結(jié)論1,為探究活動二作鋪墊。

效果:1.探究活動一讓學(xué)生獨立觀察,自主探究,培養(yǎng)獨立思考的習(xí)慣和能力;2.通過探索發(fā)現(xiàn),讓學(xué)生得到成功體驗,激發(fā)進一步探究的熱情和愿望。

2.探究活動二

內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?

(1)觀察下面兩幅圖:

(2)填表:

A的面積

(單位面積)B的面積

(單位面積)C的面積

(單位面積)

左圖

右圖

(3)你是怎樣得到正方形C的面積的?與同伴交流(學(xué)生可能會做出多種方法,教師應(yīng)給予充分肯定)。

學(xué)生的方法可能有:

方法一:

如圖1,將正方形C分割為四個全等的直角三角形和一個小正方形。

方法二:

如圖2,在正方形C外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積。

方法三:

如圖3,正方形C中除去中間5個小正方形外,將周圍部分適當(dāng)拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法。

(4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?

學(xué)生通過分析數(shù)據(jù),歸納出:

結(jié)論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

意圖:探究活動二意在讓學(xué)生通過觀察、計算、探討、歸納進一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形C的面積計算是一個難點,為此設(shè)計了一個交流環(huán)節(jié)。

效果:學(xué)生通過充分討論探究,在突破正方形C的面積計算這一難點后得出結(jié)論2.

3.議一議

內(nèi)容:(1)你能用直角三角形的邊長,,來表示上圖中正方形的面積嗎?

(2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?

(3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的長度。2中發(fā)現(xiàn)的規(guī)律對這個三角形仍然成立嗎?

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。

數(shù)學(xué)小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻中又稱為畢達哥拉斯定理)。

意圖:議一議意在讓學(xué)生在結(jié)論2的基礎(chǔ)上,進一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。

效果:1.讓學(xué)生歸納表述結(jié)論,可培養(yǎng)學(xué)生的抽象概括能力及語言表達能力;2.通過作圖培養(yǎng)學(xué)生的動手實踐能力。

八年級上冊數(shù)學(xué)教案篇四

教學(xué)目標(biāo)

1、知識與技能:會推導(dǎo)平方差公式,并且懂得運用平方差公式進行簡單計算。

2、過程與方法:經(jīng)歷探索特殊形式的多項式乘法的過程,發(fā)展學(xué)生的符號感和推理能力,使學(xué)生逐漸掌握平方差公式。

3、情感、態(tài)度與價值觀:通過合作學(xué)習(xí),體會在解決具體問題過程中與他人合作的重要性,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。

教學(xué)重難點

重點:平方差公式的推導(dǎo)和運用,以及對平方差公式的幾何背景的了解。

難點:平方差公式的應(yīng)用。

關(guān)鍵:對于平方差公式的推導(dǎo),我們可以通過教師引導(dǎo),學(xué)生觀察、總結(jié)、猜想,然后得出結(jié)論來突破;抓住平方差公式的本質(zhì)特征,是正確應(yīng)用公式來計算的關(guān)鍵。

教學(xué)過程

情境設(shè)置:教師請一位學(xué)生講一講《狗熊掰棒子》的故事

學(xué)生活動:1位學(xué)生有聲有色地講述著《狗熊掰棒子》的故事,其他學(xué)生認真聽著,不時補充。

教師歸納:聽了這則故事之后,同學(xué)們應(yīng)該懂得這么一個道理,學(xué)習(xí)千萬不能像狗熊掰棒子一樣,前面學(xué),后面忘,那么,上節(jié)課我們學(xué)習(xí)了什么呢?還記得嗎?

學(xué)生回答:多項式乘以多項式。

教師激發(fā):大家是不是已經(jīng)掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。

計算:

(1)(x+2)(x—2);(2)(1+3a)(1—3a);

(2)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,觀察以上算式及運算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?再舉兩個例子驗證你的發(fā)現(xiàn)。

學(xué)生活動:分四人小組,合作學(xué)習(xí),獲得以下結(jié)果:

(1)(x+2)(x—2)=x2—4;

(2)(1+3a)(1—3a)=1—9a2;

(3)(x+5y)(x—5y)=x2—25y2;

(4)(y+3z)(y—3z)=y2—9z2。

教師活動:請一位學(xué)生上臺演示,然后引導(dǎo)學(xué)生仔細觀察以上算式及其運算結(jié)果,尋找規(guī)律。

人教版八年級數(shù)學(xué)上冊教案篇五

教學(xué)目標(biāo):

1.掌握三角形內(nèi)角和定理及其推論;

2.弄清三角形按角的分類,會按角的大小對三角形進行分類;

3.通過對三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)

5.通過對定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。

教學(xué)重點:三角形內(nèi)角和定理及其推論。

教學(xué)難點:三角形內(nèi)角和定理的證明

教學(xué)用具:直尺、微機

教學(xué)方法:互動式,談話法

教學(xué)過程:

1、創(chuàng)設(shè)情境,自然引入

把問題作為教學(xué)的出發(fā)點,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。

問題1三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個內(nèi)角有何關(guān)系呢?

問題2你能用幾何推理來論證得到的關(guān)系嗎?

對于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會感到困難,因為這個證明需添加輔助線,這是同學(xué)們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個重要內(nèi)容(板書課題)

新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。

2、設(shè)問質(zhì)疑,探究嘗試

(1)求證:三角形三個內(nèi)角的和等于

讓學(xué)生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設(shè)計了電腦動畫顯示具體情景。然后,圍繞問題設(shè)計以下幾個問題讓學(xué)生思考,教師進行學(xué)法指導(dǎo)。

問題1觀察:三個內(nèi)角拼成了一個什么角?

問題2此實驗給我們一個什么啟示?

(把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)

問題3由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對于問題3學(xué)生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達到化難為易解決問題的目的。

(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

學(xué)生回答后,電腦顯示圖表。

(3)三角形中三個內(nèi)角之和為定值,那么對三角形的其它角還有哪些特殊的關(guān)系呢?

問題1直角三角形中,直角與其它兩個銳角有何關(guān)系?

問題2三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?

問題3三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?

其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。

這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強學(xué)生書寫能力。第三,提高學(xué)生靈活運用所學(xué)知識的能力。

3、三角形三個內(nèi)角關(guān)系的定理及推論

通過上面四個例題的分析與討論,有利于學(xué)生基礎(chǔ)知識與基本能力的掌握與提高,同時更有利于學(xué)生創(chuàng)新意識與創(chuàng)造性思維能力的培養(yǎng),在練習(xí)、講評等教學(xué)環(huán)節(jié)中,形成師生之間的、學(xué)生之間的“雙向反饋”是很重要的。

4、變式訓(xùn)練,鞏固提高

根據(jù)例4的度數(shù)的求法,思考如下問題:

(3)如圖5,過D點畫AB的平行線MN,與AC、BC交于點M、N,則的度數(shù)多少?

(4)當(dāng)MN繞著點D旋轉(zhuǎn)過程中,會有怎樣的變化?

提示:變化1當(dāng)直線MN與AC、BC的交點仍在線段AC、BC上時,=

變化2當(dāng)直線MN與AC的交點在線段AC上,與BC的交點在BC的延長線上時,

變化3當(dāng)直線MN與AC的交點在線段AC的延長線上,與BC的交點在線段BC上時,=

變化4當(dāng)直線MN與AC、BC的交點在C點時,=

經(jīng)過這樣的變式、發(fā)展、學(xué)習(xí),不僅使學(xué)生鞏固了所學(xué)的數(shù)學(xué)知識,也使學(xué)生體驗了數(shù)學(xué)的運動變化觀,使學(xué)生的思維得到了培養(yǎng)。

5、小結(jié)

通過設(shè)置問題:“本節(jié)在知識方面以及在思想方法方面你有怎樣的收獲?”師生以談話交流的形式進行小結(jié)。強調(diào)學(xué)生注意:輔助線的作用及運用定理及推論解決問題時,要善于抓住條件與結(jié)論的關(guān)系。

6、布置作業(yè)

a、書面作業(yè)P43#3

b、上交作業(yè)P42#16、17

八年級上冊數(shù)學(xué)教案篇六

教學(xué)內(nèi)容

本節(jié)課主要介紹全等三角形的概念和性質(zhì)。

教學(xué)目標(biāo)

1.知識與技能

領(lǐng)會全等三角形對應(yīng)邊和對應(yīng)角相等的有關(guān)概念。

2.過程與方法

經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應(yīng)邊、對應(yīng)角。

3.情感、態(tài)度與價值觀

培養(yǎng)觀察、操作、分析能力,體會全等三角形的應(yīng)用價值。

重、難點與關(guān)鍵

1.重點:會確定全等三角形的對應(yīng)元素。

2.難點:掌握找對應(yīng)邊、對應(yīng)角的方法。

3.關(guān)鍵:找對應(yīng)邊、對應(yīng)角有下面兩種方法:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊;(2)對應(yīng)邊所對的角是對應(yīng)角,?兩條對應(yīng)邊所夾的角是對應(yīng)角。教具準(zhǔn)備

四張大小一樣的紙片、直尺、剪刀。

教學(xué)方法

采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實例,加深認識。教學(xué)過程

一、動手操作,導(dǎo)入課題

1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點?

2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?

【學(xué)生活動】動手操作、用腦思考、與同伴討論,得出結(jié)論。

【教師活動】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個多邊形和三角形。

學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細心。

【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合。這樣的兩個圖形叫做全等形,用“≌”表示。

概念:能夠完全重合的兩個三角形叫做全等三角形。

【教師活動】在紙版上任意剪下一個三角形,要求學(xué)生手拿一個三角形,做如下運動:平移、翻折、旋轉(zhuǎn),觀察其運動前后的三角形會全等嗎?

【學(xué)生活動】動手操作,實踐感知,得出結(jié)論:兩個三角形全等。

【教師活動】要求學(xué)生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂點、三個角、三條邊、每條邊的邊角、每個角的對邊。

【學(xué)生活動】把兩個三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?

【交流討論】通過同桌交流,實驗得出下面結(jié)論:

1.任意放置時,并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時才能完全重合。

2.這時它們的三個頂點、三條邊和三個內(nèi)角分別重合了。

3.完全重合說明三條邊對應(yīng)相等,三個內(nèi)角對應(yīng)相等,?對應(yīng)頂點在相對應(yīng)的位置。

八年級上冊數(shù)學(xué)教案篇七

《正方形》教學(xué)設(shè)計

教學(xué)內(nèi)容分析:

⑴學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。

⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。

⑶對本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進行歸納,梳理知識,進一步發(fā)展學(xué)生的推理能力。

學(xué)生分析:

⑴學(xué)生在小學(xué)初步認識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。

⑵學(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成熟,有待于提高。

教學(xué)目標(biāo):

⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。

⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學(xué)生的推理能力。

⑶情感態(tài)度與價值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

重點:掌握正方形的性質(zhì)與判定,并進行簡單的推理。

難點:探索正方形的判定,發(fā)展學(xué)生的推理能

教學(xué)方法:類比與探究

教具準(zhǔn)備:可以活動的四邊形模型。

一、教學(xué)分析

(一)教學(xué)內(nèi)容分析

1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》九年級上冊(人民教育出版社)

2.本課教學(xué)內(nèi)容的地位、作用,知識的前后聯(lián)系

《中心對稱圖形》是新人教版九年級數(shù)學(xué)上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學(xué)生探索精神和創(chuàng)新意識等方面都有重要意義。

3.本課教學(xué)內(nèi)容的特點,重點分析體現(xiàn)新課程理念的特點

本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學(xué)生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學(xué)生對中心對稱圖形的性質(zhì)有直觀的表象。我認為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。

(二)教學(xué)對象分析

1.學(xué)生所在地區(qū)、學(xué)校及班級的特色

我授課的班級是西安市閻良區(qū)振興中學(xué)九年級一班,作為九年級的學(xué)生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學(xué)生具有個性活潑,思維活躍,對各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動,學(xué)習(xí)積極性高的特點,但學(xué)生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。

2.學(xué)生的年齡特點和認知特點

班級學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗,因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗,感受學(xué)習(xí)思考的樂趣。

教學(xué)過程:

一:復(fù)習(xí)鞏固,建立聯(lián)系。

【教師活動】

問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

【學(xué)生活動】

學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。

【教師活動】

評析學(xué)生的結(jié)果,給予表揚。

總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。

演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

二:動手操作,探索發(fā)現(xiàn)。

活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

【學(xué)生活動】

學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。

設(shè)置問題:①什么是正方形?

觀察發(fā)現(xiàn),從活動中體會。

【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

【學(xué)生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。

設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

【學(xué)生活動】

小組討論,分組回答。

【教師活動】

總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

設(shè)置問題③正方形有那些性質(zhì)?

【學(xué)生活動】

小組討論,舉手搶答。

【教師活動】

表揚學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角

活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

學(xué)生活動

折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。

教師活動

演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?

()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

學(xué)生活動

小組充分交流,表達不同的意見。

教師活動

評析活動,總結(jié)發(fā)現(xiàn):

一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

以上是正方形的判定方法。

正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

學(xué)生交流,感受正方形

三,應(yīng)用體驗,推理證明。

出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。

方法一解:∵四邊形ABCD是正方形

∴∠ABC=90°(正方形的四個角是直角)

BC=AB=4cm(正方形的四條邊相等)

∴=45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC===4cm

∵AO=AC(正方形的對角線互相平分)

∴AO=×4=2cm

方法二:證明△AOB是等腰直角三角形,即可得證。

學(xué)生活動

獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

教師活動

總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解題步驟,表揚突出學(xué)生。

出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

學(xué)生活動

小組交流,分析題意,整理思路,指名口答。

教師活動

說明思路,從已知出發(fā)或者從已有的判定加以選擇。

四,歸納新知,梳理知識。

這一節(jié)課你有什么收獲?

學(xué)生舉手談?wù)撟约旱氖斋@。

請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。

發(fā)表評論

教學(xué)目標(biāo):

情意目標(biāo):培養(yǎng)學(xué)生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。

能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。

認知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。

教學(xué)重點、難點

重點:等腰梯形性質(zhì)的探索;

難點:梯形中輔助線的添加。

教學(xué)課件:PowerPoint演示文稿

教學(xué)方法:啟發(fā)法、

學(xué)習(xí)方法:討論法、合作法、練習(xí)法

教學(xué)過程:

(一)導(dǎo)入

1、出示圖片,說出每輛汽車車窗形狀(投影)

2、板書課題:5梯形

3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

6、特殊梯形的分類:(投影)

(二)等腰梯形性質(zhì)的探究

【探究性質(zhì)一】

思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。

【操練】

(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

【探究性質(zhì)二】

如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)

如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

等腰梯形性質(zhì):等腰梯形的兩條對角線相等。

【探究性質(zhì)三】

問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)

問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等

(三)質(zhì)疑反思、小結(jié)

讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;

學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

八年級上冊數(shù)學(xué)教案篇八

學(xué)習(xí)目標(biāo)

1、通過運算多項式乘法,來推導(dǎo)平方差公式,學(xué)生的認識由一般法則到特殊法則的能力。

2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。

3、初步學(xué)會運用平方差公式進行計算。

學(xué)習(xí)重難點重點:

平方差公式的推導(dǎo)及應(yīng)用。

難點是對公式中a,b的廣泛含義的理解及正確運用。

自學(xué)過程設(shè)計教學(xué)過程設(shè)計

看一看

認真閱讀教材,記住以下知識:

文字敘述平方差公式:_________________

用字母表示:________________

做一做:

1、完成下列練習(xí):

①(m+n)(p+q)

②(a+b)(x-y)

③(2x+3y)(a-b)

④(a+2)(a-2)

⑤(3-x)(3+x)

⑥(2m+n)(2m-n)

想一想

你還有哪些地方不是很懂?請寫出來。

_______________________________

_______________________________

________________________________、

1、下列計算對不對?若不對,請在橫線上寫出正確結(jié)果、

(1)(x-3)(x+3)=x2-3(),__________;

(2)(2x-3)(2x+3)=2x2-9(),_________;

(3)(-x-3)(x-3)=x2-9(),_________;

(4)(2xy-1)(2xy+1)=2xy2-1(),________、

2、(1)(3a-4b)()=9a2-16b2;(2)(4+2x)()=16-4x2;

(3)(-7-x)()=49-x2;(4)(-a-3b)(-3b+a)=_________、

3、計算:50×49=_________、

應(yīng)用探究

1、幾何解釋平方差公式

展示:邊長a的大正方形中有一個邊長為b的小正方形。

(1)請計算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計算)。

(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?

2、用平方差公式計算

(1)103×93(2)59、8×60、2

拓展提高

1、閱讀題:

我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:

原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)

=……=264-1

你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!

2、仔細觀察,探索規(guī)律:

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

(x-1)(x4+x3+x2+x+1)=x5-1

……

(1)試求25+24+23+22+2+1的值;

(2)寫出22023+22023+22023+…+2+1的個位數(shù)、

堂堂清

一、選擇題

1、下列各式中,能用平方差公式計算的是()

(1)(a-2b)(-a+2b);

(2)(a-2b)(-a-2b);

(3)(a-2b)(a+2b);

(4)(a-2b)(2a+b)、

八年級上冊數(shù)學(xué)教案篇九

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法。

2.內(nèi)容解析

本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學(xué)生動手操作及解決問題的能力;鼓勵學(xué)生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學(xué)生熱愛生活、勇于探索的思想感情。

理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個深入。學(xué)習(xí)了這一課,對于學(xué)生增長幾何知識,運用幾何知識解決生活中的有關(guān)問題,起著十分重要的作用。它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準(zhǔn)備。

本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系。

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)理解三角形的高、中線與角平分線等概念;

(2)會用工具畫三角形的高、中線與角平分線;

2.教學(xué)目標(biāo)解析

(1)經(jīng)歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念。

(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質(zhì)。

(3)掌握三角形的高、中線與角平分線的畫法。

(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點。

三、教學(xué)問題診斷分析

三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或?qū)吽诘闹本€上。

三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點。

三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上。而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別。

數(shù)學(xué)八年級上冊教案篇十

一。教學(xué)目標(biāo):

1.了解方差的定義和計算公式。

2.理解方差概念的產(chǎn)生和形成的過程。

3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

二。重點、難點和難點的突破方法:

1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

2.難點:理解方差公式

3.難點的突破方法:

方差公式:S=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。

(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

三。例習(xí)題的意圖分析:

1.教材P125的討論問題的意圖:

(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

(2).為引入方差概念和方差計算公式作鋪墊。

(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

(4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。

2.教材P154例1的設(shè)計意圖:

(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。

(2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實際問題。

四。課堂引入:

除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2023年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。

五。例題的分析:

教材___例_在分析過程中應(yīng)抓住以下幾點:

1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。

3.方差怎樣去體現(xiàn)波動大???

這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

六。隨堂練習(xí):

1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

問:(1)哪種農(nóng)作物的苗長的比較高?

(2)哪種農(nóng)作物的苗長得比較整齊?

2.段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭?,誰的成績比較穩(wěn)定?為什么?

測試次數(shù)12345

段巍1314131213

金志強1013161412

參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

2.__的成績

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論