2025屆黑龍江省伊春市南岔區(qū)伊春二中高三復(fù)習(xí)質(zhì)量監(jiān)測(五)數(shù)學(xué)試題_第1頁
2025屆黑龍江省伊春市南岔區(qū)伊春二中高三復(fù)習(xí)質(zhì)量監(jiān)測(五)數(shù)學(xué)試題_第2頁
2025屆黑龍江省伊春市南岔區(qū)伊春二中高三復(fù)習(xí)質(zhì)量監(jiān)測(五)數(shù)學(xué)試題_第3頁
2025屆黑龍江省伊春市南岔區(qū)伊春二中高三復(fù)習(xí)質(zhì)量監(jiān)測(五)數(shù)學(xué)試題_第4頁
2025屆黑龍江省伊春市南岔區(qū)伊春二中高三復(fù)習(xí)質(zhì)量監(jiān)測(五)數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆黑龍江省伊春市南岔區(qū)伊春二中高三復(fù)習(xí)質(zhì)量監(jiān)測(五)數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.402.設(shè)m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,3.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.44.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③5.已知函數(shù)()的最小值為0,則()A. B. C. D.6.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.7.做拋擲一枚骰子的試驗,當出現(xiàn)1點或2點時,就說這次試驗成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗中成功次數(shù)X的期望為()A.13 B.18.已知集合,,則A. B.C. D.9.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.10.已知函數(shù)是偶函數(shù),當時,函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.11.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.12.數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結(jié)論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號是()A.①② B.①③ C.①③④ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.14.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.15.在數(shù)列中,已知,則數(shù)列的的前項和為__________.16.已知函數(shù)是定義在上的奇函數(shù),且周期為,當時,,則的值為___________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實數(shù)的取值范圍.18.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結(jié)束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產(chǎn)品需要費用元,設(shè)表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.19.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.20.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.21.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實數(shù)的最大值.22.(10分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設(shè)出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設(shè)等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應(yīng)用,涉及等差數(shù)列的前項和公式的應(yīng)用,屬于容易題.2、B【解析】

根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當,,時,由于不在平面內(nèi),故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.3、A【解析】

根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關(guān)鍵是求出拋物線焦點的坐標,意在考查學(xué)生對這些知識的理解掌握水平.4、B【解析】

由題意,可設(shè)直線的方程為,利用韋達定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進而判斷第二個結(jié)論;設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.5、C【解析】

設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.6、D【解析】

由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.7、C【解析】

每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點睛】本題考查了二項分布求數(shù)學(xué)期望,意在考查學(xué)生的計算能力和應(yīng)用能力.8、D【解析】

因為,,所以,,故選D.9、D【解析】

設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.10、A【解析】

根據(jù)圖象關(guān)于軸對稱可知關(guān)于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對稱圖象關(guān)于對稱時,單調(diào)遞減時,單調(diào)遞增又且,即本題正確選項:【點睛】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.11、D【解析】

根據(jù)題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設(shè)直線OA為,設(shè)點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.【點睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).12、C【解析】

①利用之間的代換判斷出對稱軸的條數(shù);②利用基本不等式求解出到原點的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設(shè)任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設(shè),.∴.故三棱錐的體積為當且僅當時,,即.∴三點共線.設(shè)三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀想象能力,數(shù)學(xué)運算能力和邏輯推理能力,屬于較難題.14、【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率15、【解析】

由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列.,..故答案為:.【點睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項公式,訓(xùn)練了數(shù)列的分組求和,屬于中檔題.16、【解析】

由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,,..故答案為:.【點睛】本題主要考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數(shù)最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數(shù),∴當時,即【點睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關(guān)鍵.18、(1);(2)見解析.【解析】

(1)利用獨立事件的概率乘法公式可計算出所求事件的概率;(2)由題意可知隨機變量的可能取值有、、,計算出隨機變量在不同取值下的概率,由此可得出隨機變量的分布列.【詳解】(1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;(2)由題意可知,隨機變量的可能取值為、、.則,,.故的分布列為【點睛】本題考查概率的計算,同時也考查了隨機變量分布列,考查計算能力,屬于基礎(chǔ)題.19、(1)的極小值為,無極大值.(2)見解析.【解析】

(1)對求導(dǎo),確定函數(shù)單調(diào)性,得到函數(shù)極值.(2)構(gòu)造函數(shù),證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調(diào)遞減,在上單調(diào)遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【點睛】本題考查了函數(shù)的單調(diào)性,極值,不等式的證明,構(gòu)造函數(shù)是解題的關(guān)鍵.20、(1)見解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結(jié)論;(2)在點建立空間直角坐標系,利用二面角的余弦值為建立方程求得,在利用法向量求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論