版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省石家莊二中雄安校區(qū)高三省重點高中三校聯(lián)考數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的共軛復數(shù)是,且(為虛數(shù)單位),則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.我國古代數(shù)學名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸3.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或4.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.5.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內心 D.外心6.二項式的展開式中,常數(shù)項為()A. B.80 C. D.1607.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.8.已知集合,,則()A. B.C. D.9.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.10.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.11.把函數(shù)圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.12.已知,則的值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.14.若函數(shù),其中且,則______________.15.數(shù)列滿足遞推公式,且,則___________.16.已知實數(shù)a,b,c滿足,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.18.(12分)已知函數(shù).(1)若,,求函數(shù)的單調區(qū)間;(2)時,若對一切恒成立,求a的取值范圍.19.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.20.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.21.(12分)的內角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.22.(10分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.附:其中
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數(shù)在復平面內對應的點為,此點位于第四象限.故選D【點睛】本題主要考查了復數(shù)相等、復數(shù)表示的點知識,考查了方程思想,屬于基礎題.2、B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點:1.實際應用問題;2.圓臺的體積.3、C【解析】
由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的概念,考查了分類討論的數(shù)學思想.4、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.5、A【解析】
根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.6、A【解析】
求出二項式的展開式的通式,再令的次數(shù)為零,可得結果.【詳解】解:二項式展開式的通式為,令,解得,則常數(shù)項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.7、B【解析】
由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.8、A【解析】
根據(jù)對數(shù)性質可知,再根據(jù)集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.【點睛】本題考查由對數(shù)的性質比較大小,集合交集的簡單運算,屬于基礎題.9、A【解析】
設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題10、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.11、D【解析】
試題分析:把函數(shù)圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質.12、A【解析】
由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數(shù)中的誘導公式,屬于簡單題二、填空題:本題共4小題,每小題5分,共20分。13、130.15.【解析】
由題意可得顧客需要支付的費用,然后分類討論,將原問題轉化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【點睛】本題主要考查不等式的概念與性質?數(shù)學的應用意識?數(shù)學式子變形與運算求解能力,以實際生活為背景,創(chuàng)設問題情境,考查學生身邊的數(shù)學,考查學生的數(shù)學建模素養(yǎng).14、【解析】
先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.【點睛】本題主要考查了二項式定理的應用,以及導數(shù)的運算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準確求解導數(shù)是解答的關鍵,著重考查了推理與運算能力.15、2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數(shù)列遞推式和累加法的應用,屬于基礎題16、【解析】
先分離出,應用基本不等式轉化為關于c的二次函數(shù),進而求出最小值.【詳解】解:若取最小值,則異號,,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數(shù)方程轉化為普通方程,考查直角坐標方程轉化為極坐標方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.18、(1)單調遞減區(qū)間為,單調遞增區(qū)間為;(2)【解析】
(1)求導,根據(jù)導數(shù)與函數(shù)單調性關系即可求出.(2)解法一:分類討論:當時,觀察式子可得恒成立;當時,利用導數(shù)判斷函數(shù)為單調遞增,可知;當時,令,由,,根據(jù)零點存在性定理可得,進而可得在上,單調遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價于恒成立,進而記,問題轉化為求在上的最小值問題,通過二次求導,結合洛比達法則計算可得結論.【詳解】(1)當,,,,令,解得,當時,,當時,,在上單調遞減,在上單調遞增.(2)解法一:當時,函數(shù),若時,此時對任意都有,所以恒成立;若時,對任意都有,,所以,所以在上為增函數(shù),所以,即時滿足題意;若時,令,則,所以在上單調遞增,,,可知,一定存在使得,且當時,,所以在上,單調遞減,從而有時,,不滿足題意;綜上可知,實數(shù)a的取值范圍為.解法二:當時,函數(shù),又當時,,對一切恒成立等價于恒成立,記,其中,則,令,則,在上單調遞增,,恒成立,從而在上單調遞增,,由洛比達法則可知,,,解得.實數(shù)a的取值范圍為.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數(shù)法等技巧、涉及到洛比達法則等知識,注意解題方法的積累,屬于難題.19、(Ⅰ).(Ⅱ).【解析】
詳解:(Ⅰ)當時,由,解得;當時,不成立;當時,由,解得.所以不等式的解集為.(Ⅱ)因為,所以.由題意知對,,即,因為,所以,解得.【點睛】⑴絕對值不等式解法的基本思路是:去掉絕對值號,把它轉化為一般的不等式求解,轉化的方法一般有:①絕對值定義法;②平方法;③零點區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉化為求主元函數(shù)的最值,進而求出參數(shù)范圍.這種方法本質也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.20、(1)詳見解析;(2).【解析】
(1)利用線面垂直的判定定理和性質定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設點到平面的距離為,由,得,即,解得,點到平面的距離為.【點睛】本題考查線面垂直的判定定理和性質定理、等體積法求點到面的距離;考查邏輯推理能力和運算求解能力;熟練掌握線面垂直的判定定理和性質定理是求解本題的關鍵;屬于中檔題.21、(1),(2)【解析】
(1)先由正弦定理,得到,進而可得,再由,即可得出結
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 視防監(jiān)控系統(tǒng)培訓
- 糖尿病藥物經(jīng)濟學評價中的創(chuàng)新藥物定價策略
- 糖尿病精準分型與治療選擇
- 糖尿病神經(jīng)病變的個體化康復治療策略-1
- 糖尿病社區(qū)臨床路徑精細化管控
- 糖尿病皮膚病變的循證醫(yī)學證據(jù)等級
- 糖尿病患者的認知功能與血糖波動關系
- 糖尿病患者的體重管理醫(yī)共決策方案
- 糖尿病并發(fā)癥的價值化認同策略
- 2025東方通信股份有限公司核心研發(fā)崗位招聘3人備考題庫(含答案詳解)
- 2025版 全套200MW800MWh獨立儲能項目EPC工程概算表
- 順德家俱行業(yè)分析會報告
- 2025年司法協(xié)理員年度考核表
- 風電項目質量管理
- 福建省福州市福清市2024-2025學年二年級上學期期末考試語文試卷
- 2025年CAR-NK細胞治療臨床前數(shù)據(jù)
- 非煤地下礦山員工培訓
- 保安法律法規(guī)及業(yè)務能力培訓
- 班團活動設計
- GB/T 6109.1-2025漆包圓繞組線第1部分:一般規(guī)定
- 前縱隔占位患者的麻醉管理要點(PASF 2025年)
評論
0/150
提交評論