13算法案例教學課公開課一等獎課件省賽課獲獎課件_第1頁
13算法案例教學課公開課一等獎課件省賽課獲獎課件_第2頁
13算法案例教學課公開課一等獎課件省賽課獲獎課件_第3頁
13算法案例教學課公開課一等獎課件省賽課獲獎課件_第4頁
13算法案例教學課公開課一等獎課件省賽課獲獎課件_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

§§1.3算法案例(二)案例2秦九韶算法問題如何求多項式f(x)=x5+x4+x3+x2+x+1當x=5時的值呢?計算多項式f(x)

=x5+x4+x3+x2+x+1當x=5的值算法1:由于f(x)=x5+x4+x3+x2+x+1因此f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906算法2:f(5)=55+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1分析:兩種算法中各用了幾次乘法運算?和幾次加法運算?算法1:因為f(x)

=x5+x4+x3+x2+x+1所以f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906算法2:f(5)=55+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1共做了1+2+3+4=10次乘法運算,5次加法運算。共做了4次乘法運算,5次加法運算。秦九韶(1202--1261年),字道古,安岳縣人。其父秦季棲,進士出身,官至工部郎中、秘書少監(jiān)。秦九韶性敏慧,勤奮好學,幼年隨父居中都(今北京),受到名師指導,學習日益增進。及長,隨父遷湖州(今浙江吳興縣),在西門外修建住房,由秦九韶設計施工,堂分7間,后為列室,僅中堂1間,縱橫7丈,極其宏偉寬敞,顯示出他在建筑方面的才干《數(shù)書九章》——秦九韶算法《數(shù)書九章》——秦九韶算法設是一個n次的多項式對該多項式按下面的方式進行改寫:思考:當懂得了x的值后該如何求多項式的值?這是如何的一種改寫方式?最后的成果是什么?規(guī)定多項式的值,應當先算最內層的一次多項式的值,即然后,由內到外逐級計算一次多項式的值,即最后的一項是什么?這種將求一種n次多項式f(x)的值轉化成求n個一次多項式的值的辦法,稱為秦九韶算法。思考:在求多項式的值上,這是如何的一種轉化?算法環(huán)節(jié):第一步:輸入多項式次數(shù)n、最高次項的系數(shù)an和x的值.第二步:將v的值初始化為an,將i的值初始化為n-1.第三步:輸入i次項的系數(shù)ai第四步:v=vx+ai,i=i-1.第五步:判斷i與否不不大于或等于0,若是,則返回第三步;否則,輸出多項式的值v。程序框圖:這是一種在秦九韶算法中重復執(zhí)行的環(huán)節(jié),因此可用循環(huán)構造來實現(xiàn)。輸入ai開始輸入n,an,xi0?輸出v結束v=vx+aii=i-1YNi=n-1V=an輸入ai開始輸入n,an,xi0?輸出v結束v=vx+aii=i-1YNi=n-1V=anINPUT"n=";nINPUT"an=";aINPUT"x=";xv=ai=n-1WHILEi>=0PRINT"i=";iINPUT"ai=";av=v*x+ai=i-1WENDPRINTvEND程序特點:通過一次式的重復計算,逐步得出高次多項式的值,對于一種n次多項式,只需做n次乘法和n次加法即可。例1:用秦九韶算法求多項式 f(x)=2x5-5x4-4x3+3x2-6x+7當x=5時的值.解法一:首先將原多項式改寫成以下形式: f(x)=((((2x-5)x-4)x+3)x-6)x+7v0=2v1=v0x-5=2×5-5=5v2=v1x-4=5×5-4=21v3=v2x+3=21×5+3=108v4=v3x-6=108×5-6=534v5=v4x+7=534×5+7=2677因此,當x=5時,多項式的值是2677.然后由內向外逐級計算一次多項式的值,即2-5-43-67x=5105252110510854053426702677因此,當x=5時,多項式的值是2677.原多項式的系數(shù)多項式的值.例1:用秦九韶算法求多項式 f(x)=2x5-5x4-4x3+3x2-6x+7當x=5時的值.解法二:列表22-50-43-60x=5105252512512160560830403034因此,當x=5時,多項式的值是15170.練一練:用秦九韶算法求多項式 f(x)=2x6-5x5-4x3+3x2-6x當x=5時的值.解:原多項式先化為:

f(x)=2x6-5x5+0×x4-4x3+3x2-6x+0列表21517015170注意:n次多項式有n+1項,因此缺少哪一項應將其系數(shù)補0.例2已知一種五次多項式為用秦九韶算法求這個多項式當x=5的值。解:將多項式變形:按由里到外的次序,依此計算一次多項式當x=5時的值:因此,當x=5時,多項式的值等于14130.2你從中看到了如何的規(guī)律?怎么用程序框圖來描述呢?程序框圖:開始輸入f(x)的系數(shù):a0,a1,a2,a3,a4,a5輸入x0n≤5?輸出v結束v=vx0+a5-nn=n+1NY

n=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論