版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省宜賓市南溪區(qū)2025屆5月月考試卷數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在2.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3.若關(guān)于的方程的兩根互為倒數(shù),則的值為()A. B.1 C.-1 D.04.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點(diǎn),點(diǎn)C是劣弧的中點(diǎn),若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或45.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學(xué)生的心理健康情況,應(yīng)該采用普查的方式C.一組數(shù)據(jù)8,8,7,10,6,8,9的眾數(shù)和中位數(shù)都是8D.若甲組數(shù)據(jù)的方差S="0.01",乙組數(shù)據(jù)的方差s=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定6.共享單車已經(jīng)成為城市公共交通的重要組成部分,某共享單車公司經(jīng)過調(diào)查獲得關(guān)于共享單車租用行駛時間的數(shù)據(jù),并由此制定了新的收費(fèi)標(biāo)準(zhǔn):每次租用單車行駛a小時及以內(nèi),免費(fèi)騎行;超過a小時后,每半小時收費(fèi)1元,這樣可保證不少于50%的騎行是免費(fèi)的.制定這一標(biāo)準(zhǔn)中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差7.的值等于()A. B. C. D.8.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經(jīng)過原點(diǎn),那么平移的過程為()A.向下平移3個單位 B.向上平移3個單位C.向左平移4個單位 D.向右平移4個單位9.計算(-18)÷9的值是()A.-9 B.-27 C.-2 D.210.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個不相等的實(shí)數(shù)根.——蘇科版《數(shù)學(xué)》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實(shí)數(shù)根的情況是()A.有三個實(shí)數(shù)根 B.有兩個實(shí)數(shù)根 C.有一個實(shí)數(shù)根 D.無實(shí)數(shù)根11.若二元一次方程組的解為則的值為()A.1 B.3 C. D.12.下列幾何體中,三視圖有兩個相同而另一個不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.拋物線y=3x2﹣6x+a與x軸只有一個公共點(diǎn),則a的值為_____.14.飛機(jī)著陸后滑行的距離S(單位:米)與滑行的時間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t﹣1.2t2,那么飛機(jī)著陸后滑行_____秒停下.15.如圖,在中,,點(diǎn)D、E分別在邊、上,且,如果,,那么________.16.如圖,已知函數(shù)y=3x+b和y=ax﹣3的圖象交于點(diǎn)P(﹣2,﹣5),則根據(jù)圖象可得不等式3x+b>ax﹣3的解集是_____.17.關(guān)于的方程有增根,則______.18.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC中,點(diǎn)D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.20.(6分)解分式方程:=121.(6分)△ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A=60°,點(diǎn)D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點(diǎn)G,在OG上取點(diǎn)F,使OF=2OE,延長BD到點(diǎn)M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.22.(8分)拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸正半軸交于點(diǎn)C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點(diǎn),連接AC,PC,若∠PCO=3∠ACO,求點(diǎn)P的橫坐標(biāo);(2)如圖2,D為x軸下方拋物線上一點(diǎn),連DA,DB,若∠BDA+2∠BAD=90°,求點(diǎn)D的縱坐標(biāo).23.(8分)已知如圖,直線y=﹣x+4與x軸相交于點(diǎn)A,與直線y=x相交于點(diǎn)P.(1)求點(diǎn)P的坐標(biāo);(2)動點(diǎn)E從原點(diǎn)O出發(fā),沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(E不與點(diǎn)O、A重合),過點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動t秒時,F(xiàn)的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數(shù)關(guān)系式(3)若點(diǎn)M在直線OP上,在平面內(nèi)是否存在一點(diǎn)Q,使以A,P,M,Q為頂點(diǎn)的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點(diǎn)坐標(biāo)。若不存在請說明理由。24.(10分)已知,拋物線y=ax2+c過點(diǎn)(-2,2)和點(diǎn)(4,5),點(diǎn)F(0,2)是y軸上的定點(diǎn),點(diǎn)B是拋物線上除頂點(diǎn)外的任意一點(diǎn),直線l:y=kx+b經(jīng)過點(diǎn)B、F且交x軸于點(diǎn)A.(1)求拋物線的解析式;(2)①如圖1,過點(diǎn)B作BC⊥x軸于點(diǎn)C,連接FC,求證:FC平分∠BFO;②當(dāng)k=時,點(diǎn)F是線段AB的中點(diǎn);(3)如圖2,M(3,6)是拋物線內(nèi)部一點(diǎn),在拋物線上是否存在點(diǎn)B,使△MBF的周長最小?若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.25.(10分)如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.求證:AB=DC;試判斷△OEF的形狀,并說明理由.26.(12分)解分式方程:-1=27.(12分)某運(yùn)動品牌對第一季度A、B兩款運(yùn)動鞋的銷售情況進(jìn)行統(tǒng)計,兩款運(yùn)動鞋的銷售量及總銷售額如圖6所示.1月份B款運(yùn)動鞋的銷售量是A款的45
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
根據(jù)最小的正整數(shù)是1解答即可.【詳解】最小的正整數(shù)是1.故選B.本題考查了有理數(shù)的認(rèn)識,關(guān)鍵是根據(jù)最小的正整數(shù)是1解答.2、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項(xiàng)錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項(xiàng)錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項(xiàng)正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項(xiàng)錯誤.故選C.本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、C【解析】
根據(jù)已知和根與系數(shù)的關(guān)系得出k2=1,求出k的值,再根據(jù)原方程有兩個實(shí)數(shù)根,即可求出符合題意的k的值.【詳解】解:設(shè)、是的兩根,由題意得:,由根與系數(shù)的關(guān)系得:,∴k2=1,解得k=1或?1,∵方程有兩個實(shí)數(shù)根,則,當(dāng)k=1時,,∴k=1不合題意,故舍去,當(dāng)k=?1時,,符合題意,∴k=?1,故答案為:?1.本題考查的是一元二次方程根與系數(shù)的關(guān)系及相反數(shù)的定義,熟知根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.4、C【解析】
由點(diǎn)C是劣弧AB的中點(diǎn),得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點(diǎn)C是劣弧AB的中點(diǎn),∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當(dāng)P在OC的左側(cè)時,PB=3+2=5,∴PB的長度為1或5.故選C.考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.5、C【解析】
眾數(shù),中位數(shù),方差等概念分析即可.【詳解】A、中獎是偶然現(xiàn)象,買再多也不一定中獎,故是錯誤的;B、全國中學(xué)生人口多,只需抽樣調(diào)查就行了,故是錯誤的;C、這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是8,故是正確的;D、方差越小越穩(wěn)定,甲組數(shù)據(jù)更穩(wěn)定,故是錯誤.故選C.考核知識點(diǎn):眾數(shù),中位數(shù),方差.6、B【解析】
根據(jù)需要保證不少于50%的騎行是免費(fèi)的,可得此次調(diào)查的參考統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù).【詳解】因?yàn)樾枰WC不少于50%的騎行是免費(fèi)的,所以制定這一標(biāo)準(zhǔn)中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù),故選B.本題考查了中位數(shù)的知識,中位數(shù)是以它在所有標(biāo)志值中所處的位置確定的全體單位標(biāo)志值的代表值,不受分布數(shù)列的極大或極小值影響,從而在一定程度上提高了中位數(shù)對分布數(shù)列的代表性。7、C【解析】試題解析:根據(jù)特殊角的三角函數(shù)值,可知:故選C.8、A【解析】將拋物線平移,使平移后所得拋物線經(jīng)過原點(diǎn),若左右平移n個單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個單位或向右平移3個單位后拋物線經(jīng)過原點(diǎn);若上下平移m個單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個單位后拋物線經(jīng)過原點(diǎn),故選A.9、C【解析】
直接利用有理數(shù)的除法運(yùn)算法則計算得出答案.【詳解】解:(-18)÷9=-1.
故選:C.此題主要考查了有理數(shù)的除法運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.10、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點(diǎn)情況.因?yàn)楹瘮?shù)與函數(shù)的圖象只有一個交點(diǎn)所以方程只有一個實(shí)數(shù)根故選C.考點(diǎn):函數(shù)的圖象點(diǎn)評:函數(shù)的圖象問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),是中考常見題,在壓軸題中比較常見,要特別注意.11、D【解析】
先解方程組求出,再將代入式中,可得解.【詳解】解:,得,所以,因?yàn)樗?故選D.本題考查二元一次方程組的解,解題的關(guān)鍵是觀察兩方程的系數(shù),從而求出a-b的值,本題屬于基礎(chǔ)題型.12、B【解析】
根據(jù)三視圖的定義即可解答.【詳解】正方體的三視圖都是正方形,故(1)不符合題意;圓柱的主視圖、左視圖都是矩形,俯視圖是圓,故(2)符合題意;圓錐的主視圖、左視圖都是三角形,俯視圖是圓形,故(3)符合題意;三棱錐主視圖是、左視圖是,俯視圖是三角形,故(4)不符合題意;故選B.本題考查了簡單幾何體的三視圖,熟知三視圖的定義是解決問題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】
根據(jù)拋物線與x軸只有一個公共交點(diǎn),則判別式等于0,據(jù)此即可求解.【詳解】∵拋物線y=3x2﹣6x+a與x軸只有一個公共點(diǎn),∴判別式Δ=36-12a=0,解得:a=3,故答案為3本題考查了二次函數(shù)圖象與x軸的公共點(diǎn)的個數(shù)的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點(diǎn);如果△=0,與x軸有一個交點(diǎn);如果△<0,與x軸無交點(diǎn).14、1【解析】
飛機(jī)停下時,也就是滑行距離最遠(yuǎn)時,即在本題中需求出s最大時對應(yīng)的t值.【詳解】由題意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即當(dāng)t=1秒時,飛機(jī)才能停下來.故答案為1.本題考查了二次函數(shù)的應(yīng)用.解題時,利用配方法求得t=2時,s取最大值.15、【解析】
根據(jù),,得出,利用相似三角形的性質(zhì)解答即可.【詳解】∵,,∴,∴,即,∴,∵,∴,故答案為:本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是要懂得找相似三角形,利用相似三角形的性質(zhì)求解.16、x>﹣1.【解析】
根據(jù)函數(shù)y=3x+b和y=ax-3的圖象交于點(diǎn)P(-1,-5),然后根據(jù)圖象即可得到不等式
3x+b>ax-3的解集.【詳解】解:∵函數(shù)y=3x+b和y=ax-3的圖象交于點(diǎn)P(-1,-5),∴不等式
3x+b>ax-3的解集是x>-1,故答案為:x>-1.本題考查一次函數(shù)與一元一次不等式、一次函數(shù)的圖象,熟練掌握是解題的關(guān)鍵.17、-1【解析】根據(jù)分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化為整式方程為:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案為-1.點(diǎn)睛:此題主要考查了分式方程的增根問題,解題關(guān)鍵是明確增根出現(xiàn)的原因,把增根代入最簡公分母即可求得增根,然后把它代入所化為的整式方程即可求出未知系數(shù).18、【解析】
根據(jù)題意可求AD的長度,即可得CD的長度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.本題考查了菱形的性質(zhì),解直角三角形,熟練運(yùn)用菱形性質(zhì)解決問題是本題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、BD=2.【解析】
試題分析:根據(jù)∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性質(zhì)得出AB的長,從而求出DB的長.試題解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.點(diǎn)睛:本題主要考查了相似三角形的判定以及相似三角形的性質(zhì),利用相似三角形的性質(zhì)求出AB的長是解題關(guān)鍵.20、x=1【解析】
分式方程變形后去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.【詳解】化為整式方程得:2﹣3x=x﹣2,解得:x=1,經(jīng)檢驗(yàn)x=1是原方程的解,所以原方程的解是x=1.此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根.21、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】
(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點(diǎn)M作AB的平行線交AC于點(diǎn)Q,過點(diǎn)D作DN垂直EG于點(diǎn)N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結(jié)合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過點(diǎn)M作AB的平行線交AC于點(diǎn)Q,過點(diǎn)D作DN垂直EG于點(diǎn)N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設(shè)AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見解析;(2)證明見解析;(3)CE=.本題考查圓的相關(guān)性質(zhì)以及與圓有關(guān)的計算,全等三角形的性質(zhì)和判定,第三問構(gòu)造全等三角形找到與∠BMF相等的角為解題的關(guān)鍵.22、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐標(biāo)代入解析式,解方程組即可得到結(jié)論;②延長CP交x軸于點(diǎn)E,在x軸上取點(diǎn)D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進(jìn)而得到.設(shè)EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設(shè)DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標(biāo),進(jìn)而求出CE的直線解析式,聯(lián)立解方程組即可得到結(jié)論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應(yīng)邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結(jié)論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延長CP交x軸于點(diǎn)E,在x軸上取點(diǎn)D使CD=CA,作EN⊥CD交CD的延長線于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.設(shè)EN=3x,則CN=4x.∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE=,E(,0).CE的直線解析式為:,,解得:.點(diǎn)P的橫坐標(biāo).(2)作DI⊥x軸,垂足為I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD∽△DBC,∴,∴,∴.令y=0,得:.∴,∴.∵,∴,解得:yD=0或-1.∵D為x軸下方一點(diǎn),∴,∴D的縱坐標(biāo)-1.點(diǎn)睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)解析式、性質(zhì),相似三角形的判定與性質(zhì),根與系數(shù)的關(guān)系.綜合性比較強(qiáng),難度較大.23、(1);(2);(3)【解析】
(1)聯(lián)立兩直線解析式,求出交點(diǎn)P坐標(biāo)即可;(2)由F坐標(biāo)確定出OF的長,得到E的橫坐標(biāo)為a,代入直線OP解析式表示出E縱坐標(biāo),即為EF的長,分兩種情況考慮:當(dāng)時,矩形EBOF與三角形OPA重疊部分為直角三角形OEF,表示出三角形OEF面積S與a的函數(shù)關(guān)系式;當(dāng)時,重合部分為直角梯形面積,求出S與a函數(shù)關(guān)系式.(3)根據(jù)(1)所求,先求得A點(diǎn)坐標(biāo),再確定AP和PM的長度分別是2和2,又由OP=2,得到P怎么平移會得到M,按同樣的方法平移A即可得到Q.【詳解】解:(1)聯(lián)立得:,解得:;∴P的坐標(biāo)為;(2)分兩種情況考慮:當(dāng)時,由F坐標(biāo)為(a,0),得到OF=a,把E橫坐標(biāo)為a,代入得:即此時當(dāng)時,重合的面積就是梯形面積,F(xiàn)點(diǎn)的橫坐標(biāo)為a,所以E點(diǎn)縱坐標(biāo)為M點(diǎn)橫坐標(biāo)為:-3a+12,∴所以;(3)令中的y=0,解得:x=4,則A的坐標(biāo)為(4,0)則AP=,則PM=2又∵OP=∴點(diǎn)P向左平移3個單位在向下平移可以得到M1點(diǎn)P向右平移3個單位在向上平移可以得到M2∴A向左平移3個單位在向下平移可以得到Q1(1,-)A向右平移3個單位在向上平移可以得到Q1(7,)所以,存在Q點(diǎn),且坐標(biāo)是本題考查一次函數(shù)綜合題、勾股定理以及逆定理、矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.24、(1);(2)①見解析;②;(3)存在點(diǎn)B,使△MBF的周長最?。鱉BF周長的最小值為11,直線l的解析式為.【解析】
(1)用待定系數(shù)法將已知兩點(diǎn)的坐標(biāo)代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉(zhuǎn)化為求證∠BFC=∠BCF,根據(jù)“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點(diǎn)D,設(shè)B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點(diǎn)的坐標(biāo),運(yùn)用勾股定理表示出的長度,令,解關(guān)于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉(zhuǎn)化到一條直線上,再通過“兩點(diǎn)之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點(diǎn)M作MN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)B1,過點(diǎn)B作BE⊥x軸于點(diǎn)E,連接B1F,通過第(2)問的結(jié)論將△MBF的邊轉(zhuǎn)化為,可以發(fā)現(xiàn),當(dāng)點(diǎn)運(yùn)動到位置時,△MBF周長取得最小值,根據(jù)求平面直角坐標(biāo)系里任意兩點(diǎn)之間的距離的方法代入點(diǎn)與的坐標(biāo)求出的長度,再加上即是△MBF周長的最小值;將點(diǎn)的橫坐標(biāo)代入二次函數(shù)求出,再聯(lián)立與的坐標(biāo)求出的解析式即可.【詳解】(1)解:將點(diǎn)(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點(diǎn)B作BD⊥y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 惑與不惑議論文題目及答案
- 簡愛初中考試題目及答案
- 九宮格拼字題目及答案
- 考爸爸的考試題目及答案
- 養(yǎng)老院老人生活照顧人員晉升制度
- 高校爬樹課面試題目及答案
- 養(yǎng)老院老人健康飲食制度
- 中考生物高考題目及答案
- 辦公室網(wǎng)絡(luò)安全教育與培訓(xùn)制度
- 鐵路休息制度
- 2025-2030腦機(jī)接口神經(jīng)信號解碼芯片功耗降低技術(shù)路線圖報告
- 空調(diào)安裝應(yīng)急預(yù)案
- 木屋架維修施工方案
- 人工智能+技術(shù)體系變革智能物流研究報告
- 借用別人公司賬戶協(xié)議書
- 春節(jié)期間駕駛員安全教育
- 西湖龍井采購合同范本
- 集團(tuán)公司職業(yè)技能等級認(rèn)定管理辦法
- 2025年紫金礦業(yè)ai面試題目及答案
- 復(fù)發(fā)性叢集性頭痛
- HY/T 0437-2024海洋生物資源碳增匯計量和監(jiān)測技術(shù)規(guī)范大型藻類(筏式養(yǎng)殖)
評論
0/150
提交評論