長(zhǎng)安大學(xué)興華學(xué)院《商業(yè)數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
長(zhǎng)安大學(xué)興華學(xué)院《商業(yè)數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
長(zhǎng)安大學(xué)興華學(xué)院《商業(yè)數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
長(zhǎng)安大學(xué)興華學(xué)院《商業(yè)數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
長(zhǎng)安大學(xué)興華學(xué)院《商業(yè)數(shù)據(jù)分析》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁長(zhǎng)安大學(xué)興華學(xué)院《商業(yè)數(shù)據(jù)分析》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)安全的措施有很多,其中訪問控制是一種重要的措施。以下關(guān)于訪問控制的描述中,錯(cuò)誤的是?()A.訪問控制可以限制用戶對(duì)數(shù)據(jù)的訪問權(quán)限B.訪問控制可以防止數(shù)據(jù)的泄露和篡改C.訪問控制可以分為身份認(rèn)證和授權(quán)兩個(gè)環(huán)節(jié)D.訪問控制只適用于企業(yè)內(nèi)部的數(shù)據(jù)管理,對(duì)于外部數(shù)據(jù)無法進(jìn)行控制2、數(shù)據(jù)分析中的數(shù)據(jù)探索不僅包括數(shù)值型數(shù)據(jù),也包括類別型數(shù)據(jù)。假設(shè)要分析一個(gè)包含職業(yè)信息的類別型數(shù)據(jù)集,以下哪種方法可能有助于了解不同職業(yè)的分布情況?()A.計(jì)算每個(gè)職業(yè)的頻數(shù)B.繪制職業(yè)的直方圖C.進(jìn)行職業(yè)的聚類分析D.以上方法都可以3、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要分析股票市場(chǎng)數(shù)據(jù),需要從歷史價(jià)格、成交量等原始數(shù)據(jù)中構(gòu)建有效的特征。以下哪種特征構(gòu)建方法在股票數(shù)據(jù)分析中可能最為有效?()A.基于時(shí)間序列的特征提取B.基于統(tǒng)計(jì)的特征構(gòu)建C.基于主成分分析的特征降維D.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)4、數(shù)據(jù)倉(cāng)庫(kù)是數(shù)據(jù)分析的重要基礎(chǔ)設(shè)施。假設(shè)一個(gè)企業(yè)要構(gòu)建數(shù)據(jù)倉(cāng)庫(kù)來整合來自不同業(yè)務(wù)系統(tǒng)的數(shù)據(jù),以下哪個(gè)步驟是首先要進(jìn)行的?()A.確定數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)B.進(jìn)行數(shù)據(jù)清洗和轉(zhuǎn)換C.定義數(shù)據(jù)模型D.選擇合適的數(shù)據(jù)庫(kù)管理系統(tǒng)5、在進(jìn)行回歸分析時(shí),如果自變量之間存在高度的多重共線性,會(huì)對(duì)模型產(chǎn)生什么影響?()A.提高模型的準(zhǔn)確性B.使模型更易于解釋C.導(dǎo)致系數(shù)估計(jì)不準(zhǔn)確D.增加模型的穩(wěn)定性6、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),例如分析超市購(gòu)物籃中的商品組合。假設(shè)發(fā)現(xiàn)購(gòu)買面包的顧客往往也會(huì)購(gòu)買牛奶,這種關(guān)聯(lián)規(guī)則具有較高的支持度和置信度。這對(duì)超市的營(yíng)銷策略可能有什么啟示?()A.可以將面包和牛奶放在相鄰的貨架上,方便顧客購(gòu)買B.降低面包或牛奶的價(jià)格,以促進(jìn)銷售C.減少面包或牛奶的庫(kù)存,避免積壓D.這種關(guān)聯(lián)對(duì)營(yíng)銷策略沒有實(shí)際意義7、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),可能會(huì)遇到數(shù)據(jù)不一致的問題。假設(shè)你要將銷售數(shù)據(jù)和客戶數(shù)據(jù)進(jìn)行關(guān)聯(lián),以下關(guān)于處理數(shù)據(jù)不一致的方法,哪一項(xiàng)是最恰當(dāng)?shù)??()A.忽略不一致的數(shù)據(jù),只關(guān)聯(lián)一致的部分B.手動(dòng)修正不一致的數(shù)據(jù),確保關(guān)聯(lián)的準(zhǔn)確性C.使用數(shù)據(jù)轉(zhuǎn)換和映射規(guī)則,將不一致的數(shù)據(jù)統(tǒng)一D.不進(jìn)行關(guān)聯(lián),直接分別分析兩組數(shù)據(jù)8、數(shù)據(jù)分析中的探索性數(shù)據(jù)分析(EDA)有助于理解數(shù)據(jù)的特征和分布。假設(shè)我們正在分析一個(gè)關(guān)于股票市場(chǎng)的數(shù)據(jù)集,包括股票價(jià)格、成交量等變量。在進(jìn)行EDA時(shí),以下哪種可視化方法可能最有助于發(fā)現(xiàn)價(jià)格和成交量之間的潛在關(guān)系?()A.柱狀圖B.折線圖C.散點(diǎn)圖D.箱線圖9、數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。以下關(guān)于假設(shè)檢驗(yàn)的描述,錯(cuò)誤的是:()A.原假設(shè)和備擇假設(shè)是相互對(duì)立的B.當(dāng)P值小于顯著性水平時(shí),拒絕原假設(shè)C.第一類錯(cuò)誤是指錯(cuò)誤地拒絕了原假設(shè)D.樣本量越大,越容易犯第二類錯(cuò)誤10、在進(jìn)行數(shù)據(jù)分析時(shí),如果想要了解數(shù)據(jù)的分布形態(tài),以下哪種統(tǒng)計(jì)圖形最適合?()A.直方圖B.折線圖C.餅圖D.散點(diǎn)圖11、在數(shù)據(jù)分析的風(fēng)險(xiǎn)評(píng)估中,假設(shè)要評(píng)估一個(gè)投資項(xiàng)目的風(fēng)險(xiǎn)水平。以下哪種方法可能更全面地考慮各種不確定性和潛在損失?()A.敏感性分析,研究參數(shù)變化的影響B(tài).蒙特卡羅模擬,隨機(jī)生成多種可能結(jié)果C.風(fēng)險(xiǎn)矩陣,評(píng)估風(fēng)險(xiǎn)的可能性和影響程度D.不進(jìn)行風(fēng)險(xiǎn)評(píng)估,盲目投資12、在數(shù)據(jù)分析的方差分析(ANOVA)中,以下關(guān)于組間方差和組內(nèi)方差的描述,錯(cuò)誤的是()A.組間方差反映了不同組之間的差異B.組內(nèi)方差反映了組內(nèi)個(gè)體之間的差異C.如果組間方差顯著大于組內(nèi)方差,說明不同組之間存在顯著差異D.組間方差和組內(nèi)方差的比值越大,越說明組間差異不顯著13、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)對(duì)于描述數(shù)據(jù)特征非常重要。假設(shè)要分析一組學(xué)生的考試成績(jī)分布情況,包括成績(jī)的集中趨勢(shì)和離散程度。以下哪個(gè)統(tǒng)計(jì)指標(biāo)組合最能全面地描述數(shù)據(jù)的分布特征?()A.均值和標(biāo)準(zhǔn)差B.中位數(shù)和方差C.眾數(shù)和極差D.以上指標(biāo)都不夠全面14、數(shù)據(jù)分析中的描述性統(tǒng)計(jì)能夠提供數(shù)據(jù)的基本特征。假設(shè)要分析一組學(xué)生的考試成績(jī),以下關(guān)于描述性統(tǒng)計(jì)的描述,哪一項(xiàng)是不正確的?()A.均值可以反映成績(jī)的平均水平,但容易受到極端值的影響B(tài).中位數(shù)能夠較好地抵御極端值的干擾,代表數(shù)據(jù)的中間位置C.標(biāo)準(zhǔn)差越大,說明成績(jī)的分布越分散,但這并不一定意味著數(shù)據(jù)質(zhì)量差D.只要計(jì)算了均值和中位數(shù),就足以全面了解數(shù)據(jù)的分布情況,不需要考慮其他統(tǒng)計(jì)量15、在進(jìn)行數(shù)據(jù)分析時(shí),如果數(shù)據(jù)分布呈現(xiàn)右偏態(tài),以下哪種統(tǒng)計(jì)量更能代表數(shù)據(jù)的集中趨勢(shì)?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)在數(shù)據(jù)分析中,如何評(píng)估數(shù)據(jù)的可信度和可靠性?請(qǐng)說明評(píng)估的方法和指標(biāo),并舉例說明在不同數(shù)據(jù)源中的應(yīng)用。2、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行模型的可解釋性分析?請(qǐng)介紹一些可解釋性方法,如局部可解釋模型-解釋(LIME)、SHAP值等,并舉例說明。3、(本題5分)在處理氣象數(shù)據(jù)時(shí),常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋天氣預(yù)報(bào)模型、氣候數(shù)據(jù)分析等概念,并舉例說明應(yīng)用。4、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的元數(shù)據(jù)管理,說明元數(shù)據(jù)的定義、類型和重要性,以及如何有效地管理元數(shù)據(jù)。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)探討在社交媒體的用戶增長(zhǎng)分析中,如何運(yùn)用數(shù)據(jù)分析了解用戶獲取和留存的關(guān)鍵因素,制定有效的用戶增長(zhǎng)策略。2、(本題5分)在電信行業(yè),客戶流失預(yù)測(cè)和套餐優(yōu)化需要深入的數(shù)據(jù)分析。以某電信運(yùn)營(yíng)商為例,分析如何運(yùn)用數(shù)據(jù)分析來識(shí)別潛在的流失客戶、制定挽留策略、優(yōu)化套餐設(shè)計(jì),以及如何提升數(shù)據(jù)驅(qū)動(dòng)決策的執(zhí)行力和效果。3、(本題5分)在金融市場(chǎng)的資產(chǎn)組合優(yōu)化中,如何運(yùn)用數(shù)據(jù)分析考慮風(fēng)險(xiǎn)偏好和投資目標(biāo),實(shí)現(xiàn)資產(chǎn)的最優(yōu)配置。4、(本題5分)在房地產(chǎn)行業(yè),房屋交易數(shù)據(jù)、市場(chǎng)趨勢(shì)數(shù)據(jù)等不斷更新。探討如何利用數(shù)據(jù)分析方法,比如房?jī)r(jià)預(yù)測(cè)模型、投資回報(bào)率分析等,為購(gòu)房者和投資者提供決策支持,同時(shí)研究在數(shù)據(jù)準(zhǔn)確性驗(yàn)證、政策影響因素和市場(chǎng)波動(dòng)不確定性方面所面臨的困難及解決途徑。5、(本題5分)社交媒體平臺(tái)如何通過數(shù)據(jù)分析來發(fā)現(xiàn)熱門話題、引導(dǎo)輿論和增強(qiáng)用戶粘性?請(qǐng)?jiān)敿?xì)闡述數(shù)據(jù)的監(jiān)測(cè)和分析方法,以及如何在尊重用戶隱私的前提下實(shí)現(xiàn)平臺(tái)的發(fā)展目標(biāo)。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某社交媒體平臺(tái)積累了用戶的話題參與度、群組活動(dòng)數(shù)據(jù)、信息傳播路徑等。探討怎樣利用這些數(shù)據(jù)進(jìn)行社區(qū)運(yùn)營(yíng)和內(nèi)容推薦優(yōu)化。2、(本題10分)某電商平臺(tái)積累了不同品類商品的退貨數(shù)據(jù)、用戶評(píng)價(jià)、商品描述等。分析怎樣借助這

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論