四川省南充市高坪區(qū)南充市高坪中學(xué)2025年協(xié)作體中考摸底測(cè)試數(shù)學(xué)試題試卷含解析_第1頁(yè)
四川省南充市高坪區(qū)南充市高坪中學(xué)2025年協(xié)作體中考摸底測(cè)試數(shù)學(xué)試題試卷含解析_第2頁(yè)
四川省南充市高坪區(qū)南充市高坪中學(xué)2025年協(xié)作體中考摸底測(cè)試數(shù)學(xué)試題試卷含解析_第3頁(yè)
四川省南充市高坪區(qū)南充市高坪中學(xué)2025年協(xié)作體中考摸底測(cè)試數(shù)學(xué)試題試卷含解析_第4頁(yè)
四川省南充市高坪區(qū)南充市高坪中學(xué)2025年協(xié)作體中考摸底測(cè)試數(shù)學(xué)試題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省南充市高坪區(qū)南充市高坪中學(xué)2025年協(xié)作體中考摸底測(cè)試數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米2.一個(gè)不透明的袋子里裝著質(zhì)地、大小都相同的3個(gè)紅球和2個(gè)綠球,隨機(jī)從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機(jī)摸出一球.兩次都摸到紅球的概率是()A. B. C. D.3.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.4.已知方程的兩個(gè)解分別為、,則的值為()A. B. C.7 D.35.已知,則的值是A.60 B.64 C.66 D.726.函數(shù)y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>47.在平面直角坐標(biāo)系中,將點(diǎn)P(4,﹣3)繞原點(diǎn)旋轉(zhuǎn)90°得到P1,則P1的坐標(biāo)為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)8.已知關(guān)于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣39.肥皂泡的泡壁厚度大約是0.00000071米,數(shù)字0.00000071用科學(xué)記數(shù)法表示為()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣810.下列由左邊到右邊的變形,屬于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a(chǎn)2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.二次函數(shù)的圖象與x軸有____個(gè)交點(diǎn)

.12.如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC13.在?ABCD中,AB=3,BC=4,當(dāng)?ABCD的面積最大時(shí),下列結(jié)論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號(hào))14.若一個(gè)多邊形每個(gè)內(nèi)角為140°,則這個(gè)多邊形的邊數(shù)是________.15.如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長(zhǎng))為_(kāi)____km.16.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為_(kāi)_______.三、解答題(共8題,共72分)17.(8分)計(jì)算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.18.(8分)如圖,拋物線(xiàn)l:y=(x﹣h)2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將拋物線(xiàn)ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)?的圖象.(1)若點(diǎn)A的坐標(biāo)為(1,0).①求拋物線(xiàn)l的表達(dá)式,并直接寫(xiě)出當(dāng)x為何值時(shí),函數(shù)?的值y隨x的增大而增大;②如圖2,若過(guò)A點(diǎn)的直線(xiàn)交函數(shù)?的圖象于另外兩點(diǎn)P,Q,且S△ABQ=2S△ABP,求點(diǎn)P的坐標(biāo);(2)當(dāng)2<x<3時(shí),若函數(shù)f的值隨x的增大而增大,直接寫(xiě)出h的取值范圍.19.(8分)綜合與探究如圖1,平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+3與x軸分別交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C,點(diǎn)D是y軸負(fù)半軸上一點(diǎn),直線(xiàn)BD與拋物線(xiàn)y=ax2+bx+3在第三象限交于點(diǎn)E(﹣4,y)點(diǎn)F是拋物線(xiàn)y=ax2+bx+3上的一點(diǎn),且點(diǎn)F在直線(xiàn)BE上方,將點(diǎn)F沿平行于x軸的直線(xiàn)向右平移m個(gè)單位長(zhǎng)度后恰好落在直線(xiàn)BE上的點(diǎn)G處.(1)求拋物線(xiàn)y=ax2+bx+3的表達(dá)式,并求點(diǎn)E的坐標(biāo);(2)設(shè)點(diǎn)F的橫坐標(biāo)為x(﹣4<x<4),解決下列問(wèn)題:①當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過(guò)點(diǎn)F作x軸的垂線(xiàn)FP,交直線(xiàn)BE于點(diǎn)P,垂足為F,連接FD.是否存在點(diǎn)F,使△FDP與△FDG的面積比為1:2?若存在,直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,說(shuō)明理由.20.(8分)(10分)如圖,AB是⊙O的直徑,OD⊥弦BC于點(diǎn)F,交⊙O于點(diǎn)E,連結(jié)CE、AE、CD,若∠AEC=∠ODC.(1)求證:直線(xiàn)CD為⊙O的切線(xiàn);(2)若AB=5,BC=4,求線(xiàn)段CD的長(zhǎng).21.(8分)綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點(diǎn)A在x軸上,點(diǎn)B在y軸上,點(diǎn)在二次函數(shù)的圖像上.(1)求二次函數(shù)的表達(dá)式;(2)求點(diǎn)A,B的坐標(biāo);(3)把△ABC沿x軸正方向平移,當(dāng)點(diǎn)B落在拋物線(xiàn)上時(shí),求△ABC掃過(guò)區(qū)域的面積.22.(10分)(1)問(wèn)題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立.說(shuō)明理由.(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:如圖3,在△ABD中,AB=6,AD=BD=1.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿(mǎn)足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)DC的長(zhǎng)與△ABD底邊上的高相等時(shí),求t的值.23.(12分)在平面直角坐標(biāo)系中,拋物線(xiàn)y=(x﹣h)2+k的對(duì)稱(chēng)軸是直線(xiàn)x=1.若拋物線(xiàn)與x軸交于原點(diǎn),求k的值;當(dāng)﹣1<x<0時(shí),拋物線(xiàn)與x軸有且只有一個(gè)公共點(diǎn),求k的取值范圍.24.已知四邊形ABCD為正方形,E是BC的中點(diǎn),連接AE,過(guò)點(diǎn)A作∠AFD,使∠AFD=2∠EAB,AF交CD于點(diǎn)F,如圖①,易證:AF=CD+CF.(1)如圖②,當(dāng)四邊形ABCD為矩形時(shí),其他條件不變,線(xiàn)段AF,CD,CF之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,并給予證明;(2)如圖③,當(dāng)四邊形ABCD為平行四邊形時(shí),其他條件不變,線(xiàn)段AF,CD,CF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想.圖①圖②圖③

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.本題考查勾股定理的運(yùn)用,利用梯子長(zhǎng)度不變找到斜邊是關(guān)鍵.2、A【解析】

列表或畫(huà)樹(shù)狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.3、B【解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點(diǎn)在y軸的負(fù)半軸,且該一次函數(shù)在定義域內(nèi)是增函數(shù),∴一次函數(shù)y=kx?k的圖象經(jīng)過(guò)第一、三、四象限;故選:B.4、D【解析】

由根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結(jié)論.【詳解】解:∵方程x2?5x+2=0的兩個(gè)解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.本題考查了根與系數(shù)的關(guān)系,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)根與系數(shù)的關(guān)系得出兩根之和與兩根之積是關(guān)鍵.5、A【解析】

將代入原式,計(jì)算可得.【詳解】解:當(dāng)時(shí),原式,故選A.本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握完全平方公式.6、B【解析】

根據(jù)二次根式的性質(zhì),被開(kāi)方數(shù)大于等于0,列不等式求解.【詳解】根據(jù)題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.本題主要考查函數(shù)自變量的取值范圍的知識(shí)點(diǎn),注意:二次根式的被開(kāi)方數(shù)是非負(fù)數(shù).7、A【解析】

分順時(shí)針旋轉(zhuǎn),逆時(shí)針旋轉(zhuǎn)兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉(zhuǎn)可得P′(3,4),P″(?3,?4),故選A.本題考查坐標(biāo)與圖形變換——旋轉(zhuǎn),解題的關(guān)鍵是利用空間想象能力.8、B【解析】

把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.9、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】0.00000071的小數(shù)點(diǎn)向或移動(dòng)7位得到7.1,所以0.00000071用科學(xué)記數(shù)法表示為7.1×10﹣7,故選C.本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.10、C【解析】

因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,據(jù)此進(jìn)行解答即可.【詳解】解:A、B、D三個(gè)選項(xiàng)均不是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,故都不是因式分解,只有C選項(xiàng)符合因式分解的定義,故選擇C.本題考查了因式分解的定義,牢記定義是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2【解析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號(hào)進(jìn)行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點(diǎn)的個(gè)數(shù).【詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點(diǎn)的縱坐標(biāo)是零,即當(dāng)y=0時(shí),x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個(gè)不相等是實(shí)數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個(gè)交點(diǎn),故答案為:2.【點(diǎn)睛】本題考查了拋物線(xiàn)與x軸的交點(diǎn).二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點(diǎn)與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線(xiàn)與x軸的交點(diǎn)個(gè)數(shù).△=b2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn).12、60【解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.13、①②④【解析】

由當(dāng)?ABCD的面積最大時(shí),AB⊥BC,可判定?ABCD是矩形,由矩形的性質(zhì),可得②④正確,③錯(cuò)誤,又由勾股定理求得AC=1.【詳解】∵當(dāng)?ABCD的面積最大時(shí),AB⊥BC,∴?ABCD是矩形,

∴∠A=∠C=90°,AC=BD,故③錯(cuò)誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.此題考查了平行四邊形的性質(zhì)、矩形的判定與性質(zhì)以及勾股定理.注意證得?ABCD是矩形是解此題的關(guān)鍵.14、九【解析】

根據(jù)多邊形的內(nèi)角和定理:180°?(n-2)進(jìn)行求解即可.【詳解】由題意可得:180°(n?2)=140°n,解得n=9,故多邊形是九邊形.故答案為9.本題考查了多邊形的內(nèi)角和定理,解題的關(guān)鍵是熟練的掌握多邊形的內(nèi)角和定理.15、40【解析】

首先證明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解決問(wèn)題.【詳解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由題意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2×20×=40(km),故答案為40.本題考查解直角三角形的應(yīng)用﹣方向角問(wèn)題,解題的關(guān)鍵是證明PB=BC,推出∠C=30°.16、1-1.【解析】

將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進(jìn)而得出△CEF為直角三角形,通過(guò)解直角三角形求出BC的長(zhǎng)度以及證明全等找出DE=FE,設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過(guò)勾股定理找出方程是解題的關(guān)鍵.三、解答題(共8題,共72分)17、2【解析】

先根據(jù)0次冪的意義、絕對(duì)值的意義、二次根式的除法、負(fù)整數(shù)指數(shù)冪的意義化簡(jiǎn),然后進(jìn)一步計(jì)算即可.【詳解】解:原式=2+2﹣+2=2﹣2+2=2.本題考查了0次冪的意義、絕對(duì)值的意義、二次根式的除法、負(fù)整數(shù)指數(shù)冪的意義,熟練掌握各知識(shí)點(diǎn)是解答本題的關(guān)鍵.18、(1)①當(dāng)1<x<3或x>5時(shí),函數(shù)?的值y隨x的增大而增大,②P(,);(2)當(dāng)3≤h≤4或h≤0時(shí),函數(shù)f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數(shù)法求拋物線(xiàn)的解析式,由對(duì)稱(chēng)性求點(diǎn)B的坐標(biāo),根據(jù)圖象寫(xiě)出函數(shù)?的值y隨x的增大而增大(即呈上升趨勢(shì))的x的取值;②如圖2,作輔助線(xiàn),構(gòu)建對(duì)稱(chēng)點(diǎn)F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設(shè)AD=a,根據(jù)QE=2FD列方程可求得a的值,并計(jì)算P的坐標(biāo);(2)先令y=0求拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)坐標(biāo),根據(jù)圖象中呈上升趨勢(shì)的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線(xiàn)y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點(diǎn)A在點(diǎn)B的左側(cè),∴h>0,∴h=3,∴拋物線(xiàn)l的表達(dá)式為:y=(x﹣3)2﹣2,∴拋物線(xiàn)的對(duì)稱(chēng)軸是:直線(xiàn)x=3,由對(duì)稱(chēng)性得:B(5,0),由圖象可知:當(dāng)1<x<3或x>5時(shí),函數(shù)?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點(diǎn)D,延長(zhǎng)PD交拋物線(xiàn)l于點(diǎn)F,作QE⊥x軸于E,則PD∥QE,由對(duì)稱(chēng)性得:DF=PD,∵S△ABQ=2S△ABP,∴AB?QE=2×AB?PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,設(shè)AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵點(diǎn)F、Q在拋物線(xiàn)l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)當(dāng)y=0時(shí),(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵點(diǎn)A在點(diǎn)B的左側(cè),且h>0,∴A(h﹣2,0),B(h+2,0),如圖3,作拋物線(xiàn)的對(duì)稱(chēng)軸交拋物線(xiàn)于點(diǎn)C,分兩種情況:①由圖象可知:圖象f在AC段時(shí),函數(shù)f的值隨x的增大而增大,則,∴3≤h≤4,②由圖象可知:圖象f點(diǎn)B的右側(cè)時(shí),函數(shù)f的值隨x的增大而增大,即:h+2≤2,h≤0,綜上所述,當(dāng)3≤h≤4或h≤0時(shí),函數(shù)f的值隨x的增大而增大.考點(diǎn):待定系數(shù)法求二次函數(shù)的解析式;二次函數(shù)的增減性問(wèn)題、三角形相似的性質(zhì)和判定;一元二次方程;一元一次不等式組.19、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標(biāo)為(﹣3,0)或(﹣3,).【解析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線(xiàn)的表達(dá)式,再將E點(diǎn)坐標(biāo)代入表達(dá)式求出y的值即可;(3)①設(shè)直線(xiàn)BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達(dá)式求出D點(diǎn)坐標(biāo),當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),可得G點(diǎn)坐標(biāo),GF∥x軸,故可得F的縱坐標(biāo),再將y=﹣2代入拋物線(xiàn)的解析式求解可得點(diǎn)F的坐標(biāo),再根據(jù)m=FG即可得m的值;②設(shè)點(diǎn)F與點(diǎn)G的坐標(biāo),根據(jù)m=FG列出方程化簡(jiǎn)可得出m的二次函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當(dāng)點(diǎn)F在x軸的左側(cè)時(shí)與右側(cè)時(shí)的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設(shè)出F,G點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)關(guān)系列出等式化簡(jiǎn)求解即可得F的坐標(biāo).【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線(xiàn)的表達(dá)式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點(diǎn)E的坐標(biāo)為(﹣4,﹣6).(3)①設(shè)直線(xiàn)BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線(xiàn)BD的表達(dá)式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),G的坐標(biāo)為(0,﹣2).∵GF∥x軸,∴F的縱坐標(biāo)為﹣2.將y=﹣2代入拋物線(xiàn)的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點(diǎn)F的坐標(biāo)為(﹣+3,﹣2).∴m=FG=﹣3.②設(shè)點(diǎn)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡(jiǎn)得,m=﹣x3+4,∵﹣<0,∴m有最大值,當(dāng)x=0時(shí),m的最大值為4.(2)當(dāng)點(diǎn)F在x軸的左側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,0).當(dāng)點(diǎn)F在x軸的右側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,).綜上所述,點(diǎn)F的坐標(biāo)為(﹣3,0)或(﹣3,).本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.20、(1)證明見(jiàn)試題解析;(2).【解析】試題分析:(1)利用圓周角定理結(jié)合等腰三角形的性質(zhì)得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質(zhì)得出DC的長(zhǎng).試題解析:(1)連接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直線(xiàn)CD為⊙O的切線(xiàn);(2)連接AC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴,即,解得;DC=.考點(diǎn):切線(xiàn)的判定.21、(1);(2);(3).【解析】

(1)將點(diǎn)代入二次函數(shù)解析式即可;(2)過(guò)點(diǎn)作軸,證明即可得到即可得出點(diǎn)A,B的坐標(biāo);(3)設(shè)點(diǎn)的坐標(biāo)為,解方程得出四邊形為平行四邊形,求出AC,AB的值,通過(guò)掃過(guò)區(qū)域的面積=代入計(jì)算即可.【詳解】解:(1)∵點(diǎn)在二次函數(shù)的圖象上,.解方程,得∴二次函數(shù)的表達(dá)式為.(2)如圖1,過(guò)點(diǎn)作軸,垂足為..,.在和中,∵,.∵點(diǎn)的坐標(biāo)為,..(3)如圖2,把沿軸正方向平移,當(dāng)點(diǎn)落在拋物線(xiàn)上點(diǎn)處時(shí),設(shè)點(diǎn)的坐標(biāo)為.解方程得:(舍去)或由平移的性質(zhì)知,且,∴四邊形為平行四邊形,.掃過(guò)區(qū)域的面積==.本題考查了二次函數(shù)與幾何綜合問(wèn)題,涉及全等三角形的判定與性質(zhì),平行四邊形的性質(zhì)與判定,勾股定理解直角三角形,解題的關(guān)鍵是靈活運(yùn)用二次函數(shù)的性質(zhì)與幾何的性質(zhì).22、(2)證明見(jiàn)解析;(2)結(jié)論成立,理由見(jiàn)解析;(3)2秒或2秒.【解析】

(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;(3)過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論