山東省日照市重點名校2025屆初三下學(xué)期三診考試數(shù)學(xué)試題試卷含解析_第1頁
山東省日照市重點名校2025屆初三下學(xué)期三診考試數(shù)學(xué)試題試卷含解析_第2頁
山東省日照市重點名校2025屆初三下學(xué)期三診考試數(shù)學(xué)試題試卷含解析_第3頁
山東省日照市重點名校2025屆初三下學(xué)期三診考試數(shù)學(xué)試題試卷含解析_第4頁
山東省日照市重點名校2025屆初三下學(xué)期三診考試數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省日照市重點名校2025屆初三下學(xué)期三診考試數(shù)學(xué)試題試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm2.已知電流I(安培)、電壓U(伏特)、電阻R(歐姆)之間的關(guān)系為,當(dāng)電壓為定值時,I關(guān)于R的函數(shù)圖象是()A. B. C. D.3.下列函數(shù)中,y關(guān)于x的二次函數(shù)是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x24.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.5.已知關(guān)于x的不等式組﹣1<2x+b<1的解滿足0<x<2,則b滿足的條件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣36.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)27.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊8.定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱之為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為()A. B. C. D.9.如圖,已知在△ABC,AB=AC.若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結(jié)論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE10.估計5﹣的值應(yīng)在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間二、填空題(共7小題,每小題3分,滿分21分)11.點(-1,a)、(-2,b)是拋物線上的兩個點,那么a和b的大小關(guān)系是a_______b(填“>”或“<”或“=”).12.已知點M(1,2)在反比例函數(shù)y=k13.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點D,如果EF=8,AD=2,則⊙O半徑的長是_____.14.如圖,在平面直角坐標(biāo)系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數(shù)y=的圖象上,則菱形的面積為_____.15.如圖,在5×5的正方形(每個小正方形的邊長為1)網(wǎng)格中,格點上有A、B、C、D、E五個點,如果要求連接兩個點之后線段的長度大于3且小于4,則可以連接_____.(寫出一個答案即可)16.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.17.比較大小:_____1.三、解答題(共7小題,滿分69分)18.(10分)一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應(yīng)關(guān)系如圖所示:(1)甲乙兩地相距千米,慢車速度為千米/小時.(2)求快車速度是多少?(3)求從兩車相遇到快車到達(dá)甲地時y與x之間的函數(shù)關(guān)系式.(4)直接寫出兩車相距300千米時的x值.19.(5分)臺州市某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示:(1)求日銷售量y與時間t的函數(shù)關(guān)系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?20.(8分)如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.21.(10分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.22.(10分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應(yīng)用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.23.(12分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關(guān)系,并證明.24.(14分)有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小懷根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小懷的探究過程,請補(bǔ)充完成:(1)函數(shù)的自變量x的取值范圍是;(2)列出y與x的幾組對應(yīng)值.請直接寫出m的值,m=;(3)請在平面直角坐標(biāo)系xOy中,描出表中各對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象;(4)結(jié)合函數(shù)的圖象,寫出函數(shù)的一條性質(zhì).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關(guān)于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.2、C【解析】

根據(jù)反比例函數(shù)的圖像性質(zhì)進(jìn)行判斷.【詳解】解:∵,電壓為定值,∴I關(guān)于R的函數(shù)是反比例函數(shù),且圖象在第一象限,故選C.本題考查反比例函數(shù)的圖像,掌握圖像性質(zhì)是解題關(guān)鍵.3、B【解析】

判斷一個函數(shù)是不是二次函數(shù),在關(guān)系式是整式的前提下,如果把關(guān)系式化簡整理(去括號、合并同類項)后,能寫成y=ax2+bx+c(a,b,c為常數(shù),a≠0)的形式,那么這個函數(shù)就是二次函數(shù),否則就不是.【詳解】A.當(dāng)a=0時,y=ax2+bx+c=bx+c,不是二次函數(shù),故不符合題意;B.y=x(x﹣1)=x2-x,是二次函數(shù),故符合題意;C.的自變量在分母中,不是二次函數(shù),故不符合題意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函數(shù),故不符合題意;故選B.本題考查了二次函數(shù)的定義,一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做二次函數(shù),據(jù)此求解即可.4、A【解析】

應(yīng)明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最?。还蔬xA.此題考負(fù)數(shù)的大小比較,應(yīng)理解數(shù)字大的負(fù)數(shù)反而小.5、C【解析】

根據(jù)不等式的性質(zhì)得出x的解集,進(jìn)而解答即可.【詳解】∵-1<2x+b<1∴,∵關(guān)于x的不等式組-1<2x+b<1的解滿足0<x<2,∴,解得:-3≤b≤-1,故選C.此題考查解一元一次不等式組,關(guān)鍵是根據(jù)不等式的性質(zhì)得出x的解集.6、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數(shù)圖象與幾何變換.7、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.8、A【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;

②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,

概率為.

故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.9、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點B為圓心,BC長為半徑畫弧,交腰AC于點E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點睛:本題考查了等腰三角形的性質(zhì),當(dāng)?shù)妊切蔚牡捉菍?yīng)相等時其頂角也相等,難度不大.10、C【解析】

先化簡二次根式,合并后,再根據(jù)無理數(shù)的估計解答即可.【詳解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值應(yīng)在7和8之間,故選C.本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是估算出無理數(shù)的大小.二、填空題(共7小題,每小題3分,滿分21分)11、<【解析】把點(-1,a)、(-2,b)分別代入拋物線,則有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案為<.12、-2【解析】k==1×(-2)=-213、1.【解析】試題解析:連接OE,如下圖所示,則:OE=OA=R,∵AB是⊙O的直徑,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考點:1.垂徑定理;2.解直角三角形.14、1【解析】

連接AC交OB于D,由菱形的性質(zhì)可知.根據(jù)反比例函數(shù)中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【詳解】連接AC交OB于D.

四邊形OABC是菱形,

點A在反比例函數(shù)的圖象上,

的面積,

菱形OABC的面積=的面積=1.本題考查的知識點是菱形的性質(zhì)及反比例函數(shù)的比例系數(shù)k的幾何意義.解題關(guān)鍵是反比例函數(shù)圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系,即.15、答案不唯一,如:AD【解析】

根據(jù)勾股定理求出,根據(jù)無理數(shù)的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.本題考查了無理數(shù)的估算和勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.16、5.【解析】

試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.17、【解析】

先將1化為根號的形式,根據(jù)被開方數(shù)越大值越大即可求解.【詳解】解:,,,故答案為>.本題考查實數(shù)大小的比較,比較大小時,常用的方法有:作差法,作商法,如果有一個是二次根式,要把另一個也化為二次根式的形式,根據(jù)被開方數(shù)的大小進(jìn)行比較.三、解答題(共7小題,滿分69分)18、(1)10,1;(2)快車速度是2千米/小時;(3)從兩車相遇到快車到達(dá)甲地時y與x之間的函數(shù)關(guān)系式為y=150x﹣10;(4)當(dāng)x=2小時或x=4小時時,兩車相距300千米.【解析】

(1)由當(dāng)x=0時y=10可得出甲乙兩地間距,再利用速度=兩地間距÷慢車行駛的時間,即可求出慢車的速度;(2)設(shè)快車的速度為a千米/小時,根據(jù)兩地間距=兩車速度之和×相遇時間,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;(3)分別求出快車到達(dá)甲地的時間及快車到達(dá)甲地時兩車之間的間距,根據(jù)函數(shù)圖象上點的坐標(biāo),利用待定系數(shù)法即可求出該函數(shù)關(guān)系式;(4)利用待定系數(shù)法求出當(dāng)0≤x≤4時y與x之間的函數(shù)關(guān)系式,將y=300分別代入0≤x≤4時及4≤x≤時的函數(shù)關(guān)系式中求出x值,此題得解.【詳解】解:(1)∵當(dāng)x=0時,y=10,∴甲乙兩地相距10千米.10÷10=1(千米/小時).故答案為10;1.(2)設(shè)快車的速度為a千米/小時,根據(jù)題意得:4(1+a)=10,解得:a=2.答:快車速度是2千米/小時.(3)快車到達(dá)甲地的時間為10÷2=(小時),當(dāng)x=時,兩車之間的距離為1×=400(千米).設(shè)當(dāng)4≤x≤時,y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),∵該函數(shù)圖象經(jīng)過點(4,0)和(,400),∴,解得:,∴從兩車相遇到快車到達(dá)甲地時y與x之間的函數(shù)關(guān)系式為y=150x﹣10.(4)設(shè)當(dāng)0≤x≤4時,y與x之間的函數(shù)關(guān)系式為y=mx+n(m≠0),∵該函數(shù)圖象經(jīng)過點(0,10)和(4,0),∴,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣150x+10.當(dāng)y=300時,有﹣150x+10=300或150x﹣10=300,解得:x=2或x=4.∴當(dāng)x=2小時或x=4小時時,兩車相距300千米.本題考查了待定系數(shù)法求一次函數(shù)解析式、一元一次方程的應(yīng)用以及一次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是:(1)利用速度=兩地間距÷慢車行駛的時間,求出慢車的速度;(2)根據(jù)兩地間距=兩車速度之和×相遇時間,列出關(guān)于a的一元一次方程;(3)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出函數(shù)關(guān)系式;(4)利用一次函數(shù)圖象上點的坐標(biāo)特征求出當(dāng)y=300時x的值.19、(1)y=﹣2t+200(1≤t≤80,t為整數(shù));(2)第30天的日銷售利潤最大,最大利潤為2450元;(3)共有21天符合條件.【解析】

(1)根據(jù)函數(shù)圖象,設(shè)解析式為y=kt+b,將(1,198)、(80,40)代入,利用待定系數(shù)法求解可得;

(2)設(shè)日銷售利潤為w,根據(jù)“總利潤=每千克利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)分別求得最值即可判斷;

(3)求出w=2400時t的值,結(jié)合函數(shù)圖象即可得出答案;【詳解】(1)設(shè)解析式為y=kt+b,將(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t為整數(shù));(2)設(shè)日銷售利潤為w,則w=(p﹣6)y,當(dāng)1≤t≤80時,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴當(dāng)t=30時,w最大=2450;∴第30天的日銷售利潤最大,最大利潤為2450元.(3)由(2)得:當(dāng)1≤t≤80時,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范圍是20≤t≤40,∴共有21天符合條件.本題考查二次函數(shù)的應(yīng)用,熟練掌握待定系數(shù)求函數(shù)解析式、由相等關(guān)系得出利潤的函數(shù)解析式、利用二次函數(shù)的圖象解不等式及二次函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.20、(1)見解析;(2)BG=BC+CG=1.【解析】

(1)利用正方形的性質(zhì),可得∠A=∠D,根據(jù)已知可得AE:AB=DF:DE,根據(jù)有兩邊對應(yīng)成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據(jù)相似三角形的預(yù)備定理得到△EDF∽△GCF,再根據(jù)相似的性質(zhì)即可求得CG的長,那么BG的長也就不難得到.【詳解】(1)證明:∵ABCD為正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD為正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=DC,正方形的邊長為4,∴ED=2,CG=6,∴BG=BC+CG=1.本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.21、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結(jié)論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結(jié)果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.本題考查了等腰直角三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、垂徑定理、三角函數(shù)等知識,熟練掌握相似三角形的判定與性質(zhì)、勾股定理是關(guān)鍵.22、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設(shè)則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進(jìn)行討論:①當(dāng)時和②當(dāng)時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關(guān)于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設(shè)則由勾股定理得∴(3)①當(dāng)時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∠DCF=45°,設(shè)∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到,∴是等腰直角三角形,∴②當(dāng)時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉(zhuǎn)45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質(zhì)等,掌握等底高三角形的性質(zhì)是解題的關(guān)鍵.23、(1)①45°,②;(2)線段AH與AB+AC之間的數(shù)量關(guān)系:2AH=AB+AC.證明見解析.【解析】

(1)①先根據(jù)角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質(zhì)得∠B=75°,最后利用三角形內(nèi)角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論