版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年八年級數(shù)學(xué)下學(xué)期第一次月考卷
基礎(chǔ)知識達(dá)標(biāo)測
(考試時間:120分鐘試卷滿分:120分)
考前須知:
1.本卷試題共24題,單選10題,填空6題,解答8題。
2.測試范圍:二次根式?勾股定理(人教版)。
第I卷
一.選擇題(共10小題,滿分30分,每小題3分)
1.(3分)若式子「2m-3有意義,則加的取值范圍是()
2332
A.加工§B.m>~—C.加之,D.m<~—
【分析】根據(jù)二次根式的被開方數(shù)是非負(fù)數(shù)列出不等式,解不等式得到答案.
【解答】解:由題意得:2m-320,
3
解得:m>~,
故選:C.
2.(3分)下列二次根式是最簡二次根式的是()
A.V2B.V15C.J|D.VOJ
【分析】對于一個二次根式,被開方數(shù)中不含分母或不含開得盡方的因數(shù)或因式,這種二次根式即為最簡
二次根式,據(jù)此進(jìn)行判斷即可.
【解答】解:正不是二次根式,則4不符合題意;
代是最簡二次根式,則8符合題意;
中含有分母,則C不符合題意;
屈=&含有分母'則。不符合題意;
故選:B.
3.(3分)下列運算正確的是()
百、[言=百
A.歷百=返B.9
D.724^1=6
C.VgxV2=12
【分析】直接利用二次根式的乘除運算法則分別化簡得出答案.
【解答】解:/、7?百=遍,故此選項錯誤;
B、9V3x=9^=9X-=3,故此選項錯誤;
C、V6xV2=2V3>故此選項錯誤;
D、V24*J1=V36=6,故此選項正確;
故選:D.
4.(3分)估算漁⑤的值()
V2
A.在0與1之間B.在0與2之間
C.在2與3之間D.在3與4之間
【分析】求出原式=5-遍,先確定傘的范圍,再確定5-6的范圍,即可得出答案.
【解答】解:畫字亙=屈+6-2百十五
V2
=5-76-
,.-2<V6<3,
-2>一6>-3,
,5-2>5-V6>5-3,
即2<5-Vg<3,
故選:C.
5.(3分)已知°、b、c是△4BC的三邊,下列條件:①4=6,b=10,c=8;②/C=23°,/2=57°;
③NB-/C=N4;④°2-。2=廬,能夠判斷△/BC為直角三角形的有()
A.0個B.1個C.2個D.3個
【分析】根據(jù)三角形的內(nèi)角和定理和勾股定理的逆定理求解即可.
【解答】解:①:62+82=102,
a2+c2=P,
...△ABC是直角三角形,
故本選項符合題意;
②:/C=23°,/2=57°,N/+/8+NC=180°,
AZ^=100°,
:./\ABC是鈍角三角形,
故本選項不符合題意;
(3)ZB-/C=N4
N/+/C=/2,
VZ^+Z5+ZC=180°,
.*.2/8=180°,
AZB=90°,
...△NBC是直角三角形,
故本選項符合題意;
(4)'.'a2-c2=b2,
。2=廬+。2,
△NBC是直角三角形,
故本選項符合題意;
綜上,能夠判斷△48C為直角三角形的有3個,
故選:D.
6.(3分)“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問:水深幾何?”這是我國數(shù)
學(xué)史上的“葭生池中”問題.即ZC=5,0c=1,BD=BA,則2C=()
A.8B.10C.12D.13
【分析】設(shè)8C=x,則80=84=尤+1,在RtZ\4BC中,由勾股定理得出方程求解即可.
【解答】解:設(shè)8C=x,貝1|8£>=3/=》+1,
在Rt^NBC中,由勾股定理得,
222
AB=AC+BCf
即(x+1)2=52+X2,
解得x=12,
即BC=12f
故選:c.
7.(3分)如圖,三角形紙片/BC中,ZBAC=90°,AB=2,AC=3,沿/。和將紙片折疊,使點5和
點。都落在邊5C上的點尸處,則的長是()
【分析】根據(jù)題意可得/尸=48=2,/B=/APB,CE=PE,/C=/CPE,可得N/尸E=90°,繼而設(shè)
AE=x,則CE=PE=3-x,根據(jù)勾股定理即可求解.
【解答】解:,??沿過點/的直線將紙片折疊,使點3落在邊5C上的點。處,
,AP=AB=2,NB=NAPB,
???折疊紙片,使點。與點。重合,
:,CE=PE,/C=/CPE,
VZBAC=90°,
:.ZB+ZC=90°,
ZAPB+ZC=90°,
:.ZAPE=90°,
:.AP2+PE2=AE2,
設(shè)
貝UCE=PE=3-x,
222
2+(3-x)=xf
13
解得了=—,
o
13
即4E=—,
6
故選:A,
8.(3分)已知〃+6=-6,ab=7.則代數(shù)式ajg+b的的值為()
22223636
A.--V7B.—<7C.—V7D.--V7
【分析】根據(jù)題意得。<0,b<0,02+2X7+62=36,再利用二次根式的性質(zhì)進(jìn)行化簡即可求解.
【解答】解:':a+b=-6,ab=7,
:.a<0,b<0,次+2義7+62=36,
:.a2+b2=22,
-(a2+『)縹
ab
故選:A.
9.(3分)如圖,在正方形方格中,每個小正方形的邊長都是一個單位長度,點4B,C,D,E均在小正方
形方格的頂點上,線段48,CD交于點F,若/CFB=a,則//BE等于()
【分析】過8點作8G〃CD,連接EG,根據(jù)平行線的性質(zhì)得出N/BG=/CF8=a.根據(jù)勾股定理求出
B&=17,BE2=17,EG2=34,那么5G2+8爐=醺落根據(jù)勾股定理的逆定理得出NG8E=90°,進(jìn)而求
出N48E的度數(shù).
【解答】解:如圖,過8點作2G〃CD,連接EG,
"BG//CD,
:.ZABG=ZCFB=a.
V5G2=12+42=17,2E2=12+42=17,^G2=32+52=34,
:.BgBE^Ed1,
:.ABEG是直角三角形,
:.ZGBE=90°,
ZABE=ZGBE+ZABG=90°+a.
故選:C.
10.(3分)如圖,四邊形/BCD中,AB=AD,ZBAD=90°,NBCD=30°,BC=2,NC=舊,則CD
的長為()
A
B
A.4B.2V7C.5D.V10
[分析】把△4BC繞點A逆時針旋轉(zhuǎn)90°得到△4DE,連接CE,作EFl.CD于F,則AC=AE=V14>
結(jié)合旋轉(zhuǎn)的性質(zhì)求得NNOE+NADC=240°,在RtaED尸中,NDEF=3Q°,然后利用含30°角的直角三
角形性質(zhì)及勾股定理列方程求解即可.
【解答】解:如圖,把△/8C繞點/逆時針旋轉(zhuǎn)90度,得到△4DE,連接CE,過點E作即,CD延長線
于點尸,
根據(jù)旋轉(zhuǎn)可知:AE=AC=?,ED=BC=2,ZABC=ZADE,
根據(jù)四邊形48。的內(nèi)角和=360°,
AZABC+ZBCD+ZADC+ZDAB^36Qa,
:NBAD=90°,/BCD=3Q°,
ZABC+ZADC=240°,
AZADE+ZADC=2.40°,
,NCZ)E=120°,
:.NEDF=60°,
在RtZkED尸中,DE=2,
:.DF=1,EF=G
在RtZ\4EC中,CE=^AC=2電
CF=VCE2-EF2=<28-3=5,
:.CD=CF-DF=5-1=4.
故選:A.
二.填空題(共6小題,滿分18分,每小題3分)
11.(3分)比較下列兩個數(shù)的大小:-3^1>-4.JI.(用或填空)
【分析】先根據(jù)二次根式的性質(zhì)將根號外的數(shù)字3和4,分別放入根號內(nèi),再比較大小即可求解.
[解答]解:_34=—直-4^1=-2
?:<-^3
44,
故答案為:>.
12.(3分)讀材料:我們規(guī)定,若〃+6=-1,則稱。與6是關(guān)于-1的平衡數(shù),若4+2百與加是關(guān)于-1
的平衡數(shù),則用=—―5-2y_.
【分析】根據(jù)新定義列出算式計算即可.
【解答】解:由題意,得:m=-I-4-2V3=-5-2V3-
故答案為:-5—
13.(3分)如圖,從一個大正方形中裁去面積為8c源和18c/的兩個小正方形,則留下的陰影部分面積和
為24cm2
【分析】直接利用正方形的性質(zhì)得出兩個小正方形的邊長,進(jìn)而得出大正方形的邊長,即可得出答案.
【解答】解::兩個小正方形面積為8c/和18cm2,
...大正方形邊長為:Vs+V18=2V2+=5V2(cm),
...大正方形面積為(5五)2=50(。加2),
二留下的陰影部分面積和為:50-8-18=24(cm2).
故答案為:24c加2.
14.(3分)如圖,庭院中有兩棵樹,小鳥要從一棵高10加的樹頂飛到一棵高4加的樹頂上,兩棵樹相距8加,
【分析】根據(jù)勾股定理求出AB的長即可.
【解答】解:如圖,由題意可知,AC=AD-CD=10-4=6(m),BC=8m,
在RtZUBC中,由勾股定理得,
AB=yjAC2+BC2=62+82=1°(加),
則小鳥至少要飛10m,
故答案為:10.
15.(3分)勾股數(shù)是指能成為直角三角形三條邊長的三個正整數(shù),世界上第一次給出勾股數(shù)公式的是中國古
1.11,21
代數(shù)學(xué)著作《九章算術(shù)》.現(xiàn)有勾股數(shù)。,b,c,其中a,b均小于c,a=5〃廣一5,c-—m+—,m
于1的奇數(shù),則b=m(用含m的式子表示).
【分析】根據(jù)勾股數(shù)的定義解答即可.
1.11291
【解答】解:b,。是勾股數(shù),其中。,b均小于c,。=”2一],c=-m_|-
b2=c2-a2
1111
=(~m2+~)2-(~m2—~)2
111111
=~TYT+—+~m2-(Tm4+———7772)
442442
1.11.1.11.
=4W+4+2m4m4+2m
=m2,
??,冽是大于1的奇數(shù),
??6=冽.
故答案為:m.
16.(3分)如圖,在四邊形中,AB=AD,ZBAD=90°,/C=g,BC=2后,CD=6,則
2Vli一
【分析】作4E=AC,連接EC,延長EB交CD于點F,構(gòu)造旋轉(zhuǎn)全等,再結(jié)合勾股定理求解.
【解答】解:作4EL/C,AE=AC,連接EC,延長E2交C。于點R
\'AE±AC,NB4D=90°,
:.ZBAE=ZDAC,
:AE=AC,AB=AD,
,△ABE咨AADC(SAS),
:.BE=CD=6,ZAEB=ZACD,
VZ1=Z2,
:.ZCFB=ZCAE=90°,
在RtZkZEC中,EC=6AE=2歷,
在RtABCF中,RtA£CF中,有(2百7)2-(6+BF)2=(2V10)2-SF2,
解得:BF=6,
:.CF=2,FD=4,
.*?在RtABDF中,BD=:36+16=2V13,
故答案為:2后.
三.解答題(共8小題,滿分72分)
17.(8分)計算:
(1)(3西一1)(3百+1)—(2百一1)2;
(/2)、Q位L—JR?、x?_一V270+V12.
【分析】(1)利用平方差公式,完全平方公式計算即可;
(2)先計算乘除,再計算加減.
【解答】解:⑴原式=(3百)2-1-(12-4百+1)
=27-1-12+4百一1
=13+4^3;
(2)原式=27Iix遙一]:*遍一7^7十西一71i一百
=126一6一3-2
=1172-5.
18.(8分)先化簡,再求值:底J+xR-44|-;口,其中x=/y=4.
【分析】先把各二次根式化為最簡二次根式,再合并得到原式=歷,然后把x、y的值代入計算.
1
【解答】解:??"=§>0,歹=4>0,
原式+y[xy~^y[xy~y[xy
=Vxy?
當(dāng)x=g,y=4時,原式=4=當(dāng)3-
19.(8分)如圖,在四邊形ABC。中,NB=90°,N2=3,8c=4,點。是RtZ\48C外一點,連接C7),
AD,且CD=12,40=13.求四邊形48co的面積.
【分析】根據(jù)勾股定理計算/C,根據(jù)勾股定理的逆定理判定△/DC是直角三角形,根據(jù)面積公式計算即
可.
【解答】W:VZS=90°,AB=3,BC=4,
--AC=4AB1+BC2=V32+42=5,
VCZ>=12,4D=13,AC=5,
且CD2+AC2=52+122=132=AD2,
:.ZACD=90°,
11
,四邊形Z2CZ)面積為:-BC-AC+-DC-AD
11
=~x5x12+-x3x4=36.
20.(8分)如圖,在一條繃緊的繩索一端系著一艘小船.河岸上一男子拽著繩子另一端向右走,繩端從C移
動到E,繩子始終繃緊且繩長保持不變.
(1)若C尸=7米,4F=24米,48=18米,求男子需向右移動的距離;(結(jié)果保留根號)
(2)此人以0.5米每秒的速度收繩,請通過計算回答,該男子能否在30秒內(nèi)將船從N處移動到岸邊點尸
的位置?
【分析】(1)根據(jù)勾股定理求NC、BC的長,然后作差求解即可;
(2)求出從4處移動到岸邊點尸的時間,再比較即可.
【解答】解:(1),/尸=24米,CF=7米,
.".AC-VAF2+CF2~V242+72=25(米),
?:AB=1S米,
:.BF=AF-AB=14-18=6(米),
:.BC=VBF2+CF2=762+72=^85(米),
:.CE=AC-BC=(25-V85)米,
答:男子需向右移動的距離為(25-廂)米;
(2)由題意知,需收繩的繩長為:AC-CF=25-7=18(米),
18
,此人的收繩時間為36(秒),
V36>30,
該男子不能在30秒內(nèi)將船從工處移動到岸邊點F的位置.
21.(8分)如圖是由小正方形組成的9X7網(wǎng)格,每個小正方形的頂點叫做格點,△/8C的三個頂點都是格
點,僅用無刻度的直尺在給定網(wǎng)格中按下列要求完成畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實線表示.
(1)在圖1中按下列步驟完成畫圖.
①畫出△4BC的高CD;
②畫的角平分線AE;
③畫點Z)關(guān)于4C的對稱點£>';
(2)如圖2,P是網(wǎng)格線上一點,過點P的線段"N分別交N8,于點M,N,豆PM=PN,畫出線段
MN.
②取2C的中點£,連接4E即可;
③作點8關(guān)于NC的對稱點",T關(guān)于4c的對稱點廠,連接C7交AB'于點。',點。'即為所求;
(2)連接AP并延長交網(wǎng)格線于點0,則8尸=尸0,連接4P并延長交網(wǎng)格線于點乙則/尸=尸3連接
3交8C于點N,延長NP交于點則線段"N即為所畫的線段.
【解答】解:(1)①如圖1中,線段CD即為所求;
②如圖1中,線段即為所求;
③如圖1中,點。'即為所求.
(2)如圖2,線段即為所求.
22.(10分)如圖,在△/BC中,ZABC=90°,AC=17,BC=15,點尸從點N出發(fā),以每秒3個單位長
度的速度沿折線C-8-/運動.設(shè)點尸的運動時間為f(/>0).
(1)AB=8;
(2)求斜邊NC上的高線長;
…1732
(3)①當(dāng)尸在BC上時,C尸的長為3—17,,的取值范圍是—三(用含/的代數(shù)式表
示)
143
②若點P在/BCA的平分線上,則t的值為
【分析】(1)利用股定理即可求解;
(2)過點8作8。_L4c于點。,利用面積法求解即可;
(3)①根據(jù)點尸的運動路徑及速度表示出C尸即可解答;
②過點尸作尸£_L/C于E,利用角平分線的性質(zhì)可知P5=P£,再證RtZXBCP2RtZXECP,推出
EC=BC,最后利用股定理解RtZUEP即可.
【解答】解:(1)在△/8C中,ZABC=90°,AC=17,8c=15,
'-AB=AC2-BC2=V172-152=8?
故答案為:8.
(2)如圖所示,過點5作BDLAC于點0,
11
=-AB?BC=~ACBD,
0/\ABC
8x15120
即BD
AC17~17~
???斜邊/C上的高線長為—.
(3)①???點。從點/出發(fā),以每秒3個單位長度的速度沿折線/-C-5-4運動,4c=17,
J當(dāng)?在5c上時,CP=3t-AC=3t-17.
ACAC+BC1717+15
V—<t<,BP—<t<---
1732
1732
故答案為:3%-17,<t<
②當(dāng)點P在N5C4的角平分線上時,過點尸作PELAC于E,如圖所示,
?:CP平分NBCA,ZB=90°,PELAC,
:.PB=PE.
又?:PC=PC,
.*.RtA5CP^RtA£CP(HL).
:.EC=BC=15,貝!JAE=AC-CE=17-15=2.
由(2)易知/尸=40-3bBP=3t-32,
:.PE=3t-32.
在RtZX/EP中,AP2=AE2+EP2即(40-3力2=22+(3廠32)2,
143
解得t=~lT,
143
???點P在N氏4C的平分線上時,t=—.
143
故答案為:[2.
23.(10分)(1)如圖1,在RtZUBC和中,ZBAC=ZDAE=90°,AB=AC,AD=AE,且點
。在5C邊上滑動(點。不與點叢。重合),連接EC.求證:BD2+CD2=2AD2;
EA
[拓展延伸]
(2)如圖2,在四邊形48。中,/ABC=NACB=NADC=45°.若BD=17cm,CD=8cm,求的
長;
(3)如圖3,把斜邊長都為18c加的一副三角板的斜邊重疊擺放在一起,則兩塊三角板的直角頂點之間的
距離AB長為煙—皿
【分析】(1)證明鄉(xiāng)△C4E(S4S),根據(jù)全等三角形的性質(zhì)得到BZ>=CE,NACE=NB,得到/
DCE=9Q0,根據(jù)勾股定理計算即可;
(2)作4E_L4D,使4E=4D,連接C£,DE,證明△砌。絲得到8O=CE=17c〃z,根據(jù)勾股定
理計算即可.
(3)延長到點尸,使NP=MB,先證△WWB名得43=4P,ZNAM=ZBAP,據(jù)此可得NR4尸
=NMAN=90°,由勾股定理知/52+4p2=3p2,繼而可得24"=(MB+BN)2;由直角三角形的性質(zhì)知
BN=9cm,MB=9對cm,代入計算即可得答案.
【解答】(1)證明::/BAC=/DAE=90°,
:.ZBAC-ZDAC=NDAE-ZDAC,即ZBAD=ZCAE,
在△8/D和中,
AB=AC
\(^BAD=^CAE,
VAD=AE
:.LBADmACAE(SAS),
:.BD=CE,NACE=/B,
:.ZDCE=9Q°,
:.CE2+CD2=ED2,
在RtZUOE中,AD2+AE2^ED2,
又AD=AE,
:.BD1+CD1=2AD1-,
(2)解:AE±AD,使/£=/£),連接CE,DE,如圖2,
E
A
圖2
.:/BAC+/CAD=NDAE+NCAD,
即NBAD=/CAE,
在△氏4。與中,
CAB=AC
\£.BAD=Z.CAE,
VAD=AE
??.△BAD義ACAE(SAS),
;?BD=CE=17cm,
VZADC=45°,ZEDA=45°,
ZEDC=90°,
DE=VCE2-CD2=V172-82=15cm,
VZDAE=90°,
:.AD=AE=^^-cm,
2
(3)解:如圖3,延長5N到點P使NP=MB,
圖3
VAMAB=90°,/MBN=90°,
:.ZAMB+ZANB=180°,
VZANP+ZANB=1SO°,
J/AMB=/ANP,
■:AM=AN,NP=MB,
:?叢AMB"叢ANP(SAS),
:.AB=AP,ZMAB=ZNAP,
:.ZBAP=ZBAM=90°,
222
:.BA+AP=BPf
:.2AB2=QMB+BN)2,即4B=¥(M8+BN);
?:MN=18cm,4BMN=30°,
1
:.BN=—MN=9cm,
MB=MN2-BN2=V182-92=95cm
--AB=爭9百+9)=96/^煙地,
故答案為:9片煙.
24.(12分)如圖,在平面直角坐標(biāo)系中,點/(0,a)在y軸上,點B(b,0)、。在x軸上,OB=OC,
圖1圖2圖3
(1)如圖1,則點/坐標(biāo)(0,1),點8坐標(biāo)(-3,0),ZABC=30°;
(2)如圖2,若點。在第一象限且滿足NDAC=90°,線段2。交y軸于點G,求線段2G的
長;
(3)如圖3,在(2)的條件下,若在第四象限有一點£,滿足/BEC=NBDC.請?zhí)骄緽E、CE、AE之
間的數(shù)量關(guān)系,并證明.
【分析】(1)先根據(jù)二次根式的性質(zhì)求出。的值,然后再求出,的值,取48的中點連接
證明△CMM為等邊三角形,得出NCM2=60°,求出NN8C=90°-60°=30°,即可得出答案;
(2)求出4c=J+=2,BPAB=AC,可得N4BD=NADB,接著求出NR4G=120°,證明△
BAO^/XCAO,即有/&4。=60°=ACAO,可得NGAD=180°-ADAC-ZOAC=30°,得出NR4D=
ZBAG+ZGAD=15O°,進(jìn)而有N/8Z>=N/Z>3=15°,可得NG50=N/8Z>+N/80=45°,即有NG8O
=N2GO=45°,問題隨之得解;
(3)由(2)可知:NADB=15°,可得N2_DC=NAD2+NADC=60°,進(jìn)而有/2£C=N8DC=60°,
延長E8至尸,使BF=CE,連接4斤,過/點作㈤W_LE尸于M點,根據(jù)NO/8=/O4C=60°,即有N
A4c=120°,進(jìn)一步有NA4C+/8EC=180°,即可證明N4B尸=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 巧家縣茂租鎮(zhèn)衛(wèi)生院2025年招聘編外護(hù)理人員備考題庫及答案詳解一套
- 巧家縣茂租鎮(zhèn)衛(wèi)生院2025年招聘編外護(hù)理人員備考題庫附答案詳解
- 廣東農(nóng)信2026年度校園招聘備考題庫完整參考答案詳解
- 廣東江門幼兒師范高等??茖W(xué)校2025年第三次合同制教師等崗位人員招聘備考題庫及1套完整答案詳解
- 廣東省茂名市電白區(qū)第二次赴高校公開招聘2026年度急需緊缺人才備考題庫及答案詳解1套
- 廣東行政職業(yè)學(xué)院2026年(第一批)校編工作人員招聘20人備考題庫及參考答案詳解
- 廣州華商職業(yè)學(xué)院2025-2026學(xué)年招聘70人備考題庫及一套答案詳解
- 廣州市天河區(qū)華港幼兒園2026年1月公開招聘編外聘任制專任教師備考題庫附答案詳解
- 廣州市天河區(qū)美好居幼兒園2026年1月公開招聘編外教輔人員備考題庫完整答案詳解
- 廣州市泰安中學(xué)2026年1月公開招聘編外聘用制專任教師備考題庫完整答案詳解
- 峨眉山城市介紹旅游宣傳課件
- 浙江省溫州市樂清市2023-2024學(xué)年五年級上學(xué)期期末語文試題
- 土壤改良合同模板
- WS∕T 391-2024 CT檢查操作規(guī)程
- 2024年中國成人心肌炎臨床診斷與治療指南解讀課件
- 2024年新疆文旅旅游投資集團(tuán)招聘筆試沖刺題(帶答案解析)
- JT-T-915-2014機(jī)動車駕駛員安全駕駛技能培訓(xùn)要求
- (高清版)WST 442-2024 臨床實驗室生物安全指南
- 2019譯林版高中英語全七冊單詞總表
- 陰囊膿腫的護(hù)理查房
- 黃河知識考試題庫300題(含答案)
評論
0/150
提交評論