江西省贛縣三中2024-2025學(xué)年高三下學(xué)期第一次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第1頁
江西省贛縣三中2024-2025學(xué)年高三下學(xué)期第一次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第2頁
江西省贛縣三中2024-2025學(xué)年高三下學(xué)期第一次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第3頁
江西省贛縣三中2024-2025學(xué)年高三下學(xué)期第一次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第4頁
江西省贛縣三中2024-2025學(xué)年高三下學(xué)期第一次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江西省贛縣三中2024-2025學(xué)年高三下學(xué)期第一次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.tan570°=()A. B.- C. D.2.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.43.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或4.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.5.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.6.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.7.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.8.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+19.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.10.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件11.已知實數(shù),則下列說法正確的是()A. B.C. D.12.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,,是邊的垂直平分線上的一點,則__________.14.已知集合,其中,.且,則集合中所有元素的和為_________.15.如圖,直三棱柱中,,,,P是的中點,則三棱錐的體積為________.16.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進(jìn)行分析,隨機(jī)抽取了150分到450分之間的1000名學(xué)生的成績,并根據(jù)這1000名學(xué)生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內(nèi)的學(xué)生共有____人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.18.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若點是直線的一點,過點作曲線的切線,切點為,求的最小值.20.(12分)求下列函數(shù)的導(dǎo)數(shù):(1)(2)21.(12分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.22.(10分)在中,角所對的邊分別是,且.(1)求;(2)若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

直接利用誘導(dǎo)公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.本題考查三角函數(shù)的恒等變換及化簡求值,主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.2.C【解析】

方法一:設(shè),利用拋物線的定義判斷出是的中點,結(jié)合等腰三角形的性質(zhì)求得點的橫坐標(biāo),根據(jù)拋物線的定義求得,進(jìn)而求得.方法二:設(shè)出兩點的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫出韋達(dá)定理,由此求得,進(jìn)而求得.【詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.3.C【解析】

先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.本題主要考查直線和拋物線的位置關(guān)系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.4.C【解析】

由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對應(yīng)的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對應(yīng)的點為,復(fù)數(shù)對應(yīng)的點為,所以,其中,故選C本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對應(yīng)點的距離求值即可,屬于基礎(chǔ)題型.5.D【解析】

根據(jù)面面垂直的判定定理,對選項中的命題進(jìn)行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.6.C【解析】

根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.7.D【解析】

因為,,所以且在上單調(diào)遞減,且所以,所以,又因為,,所以,所以.故選:D.本題考查利用指對數(shù)函數(shù)的單調(diào)性比較指對數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.8.B【解析】

以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.本題考查雙曲線離心率的求解,考查學(xué)生的計算能力,是中檔題.9.D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實數(shù)的方程可得:.本題選擇D選項.10.A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.11.C【解析】

利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.12.C【解析】

如圖所示,當(dāng)點C位于垂直于面的直徑端點時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

作出圖形,設(shè)點為線段的中點,可得出且,進(jìn)而可計算出的值.【詳解】設(shè)點為線段的中點,則,,,.故答案為:.本題考查平面向量數(shù)量積的計算,涉及平面向量數(shù)量積運算律的應(yīng)用,解答的關(guān)鍵就是選擇合適的基底表示向量,考查計算能力,屬于中等題.14.2889【解析】

先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當(dāng)時,集合中最小數(shù);當(dāng)時,得到集合中最大的數(shù);故答案為:2889本題考查了數(shù)列與集合綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.15.【解析】

證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點,.

故答案為:本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.16.750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】

(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當(dāng)時,,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當(dāng)時,.又,∴,∴,∴.本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題18.(1);(2)證明見解析【解析】

(1)將函數(shù)整理為分段函數(shù)形式可得,進(jìn)而分類討論求解不等式即可;(2)先利用絕對值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時,恒成立,;②當(dāng)時,,即,;③當(dāng)時,顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時取等號)(當(dāng)且僅當(dāng)時取等號)(當(dāng)且僅當(dāng)時取等號)上述三式相加可得(當(dāng)且僅當(dāng)時取等號),,故得證.本題考查解絕對值不等式和利用均值定理證明不等式,考查絕對值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類討論解決帶絕對值不等式的方法,考查了分析能力和計算能力,屬于中檔題.19.(1),;(2)見解析【解析】

(1)消去t,得直線的普通方程,利用極坐標(biāo)與普通方程互化公式得曲線的直角坐標(biāo)方程;(2)判斷與圓相離,連接,在中,,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因為,,所以曲線的直角坐標(biāo)方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設(shè)圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,,所以,,即的最小值為.本題考查參數(shù)方程化普通方程,極坐標(biāo)與普通方程互化,直線與圓的位置關(guān)系,是中檔題20.(1);(2).【解析】

(1)根據(jù)復(fù)合函數(shù)的求導(dǎo)法則可得結(jié)果.(2)同樣根據(jù)復(fù)合函數(shù)的求導(dǎo)法則可得結(jié)果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.本題考查復(fù)合函數(shù)的導(dǎo)數(shù),此類問題一般是先把函數(shù)分解為簡單函數(shù)的復(fù)合,再根據(jù)復(fù)合函數(shù)的求導(dǎo)法則可得所求的導(dǎo)數(shù),本題屬于容易題.21.(1);(2).【解析】

(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論