中國礦業(yè)大學(xué)(北京)《標(biāo)志設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
中國礦業(yè)大學(xué)(北京)《標(biāo)志設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
中國礦業(yè)大學(xué)(北京)《標(biāo)志設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
中國礦業(yè)大學(xué)(北京)《標(biāo)志設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
中國礦業(yè)大學(xué)(北京)《標(biāo)志設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁中國礦業(yè)大學(xué)(北京)《標(biāo)志設(shè)計》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來。假設(shè)要對一張包含多個水果的圖像進(jìn)行精確分割,每個水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測的分割D.基于深度學(xué)習(xí)的語義分割2、在計算機視覺的圖像風(fēng)格遷移任務(wù)中,假設(shè)要將一張照片轉(zhuǎn)換為具有特定藝術(shù)風(fēng)格的圖像,以下哪種技術(shù)可能對生成逼真的風(fēng)格效果起到關(guān)鍵作用?()A.對抗生成網(wǎng)絡(luò)(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(BoltzmannMachine)3、在計算機視覺的目標(biāo)識別任務(wù)中,除了識別目標(biāo)的類別,還需要確定目標(biāo)的位置和大小。假設(shè)我們要在一幅復(fù)雜的圖像中識別多個不同大小的物體,以下哪種目標(biāo)識別算法能夠適應(yīng)不同尺度的目標(biāo)?()A.基于滑動窗口的目標(biāo)識別算法B.基于特征金字塔的目標(biāo)識別算法C.基于注意力機制的目標(biāo)識別算法D.基于模板匹配的目標(biāo)識別算法4、在計算機視覺的人物姿態(tài)估計任務(wù)中,需要確定圖像中人物的關(guān)節(jié)位置和姿態(tài)。假設(shè)要開發(fā)一個用于健身應(yīng)用的姿態(tài)估計系統(tǒng),以下關(guān)于模型訓(xùn)練數(shù)據(jù)的獲取,哪一項是比較困難的?()A.從公開的數(shù)據(jù)集獲取大量的人物姿態(tài)圖像B.自己拍攝不同人群在各種健身動作下的圖像C.利用合成數(shù)據(jù)生成多樣化的人物姿態(tài)樣本D.從社交媒體上收集用戶分享的健身照片5、在計算機視覺的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點的圖像進(jìn)行融合,以下關(guān)于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進(jìn)行加權(quán)或組合B.特征級融合方法先提取圖像的特征,然后進(jìn)行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結(jié)果6、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設(shè)要在一張街景圖像中識別出店鋪招牌上的文字。以下關(guān)于場景文本識別方法的描述,正確的是:()A.基于光學(xué)字符識別(OCR)技術(shù)的方法對字體和排版的變化適應(yīng)性強,識別準(zhǔn)確率高B.深度學(xué)習(xí)中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關(guān)注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復(fù)雜的自然場景中準(zhǔn)確無誤地識別出各種文字7、在計算機視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對模型的訓(xùn)練和性能評估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費大量的時間和人力,但可以通過數(shù)據(jù)增強技術(shù)來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進(jìn)行更新和擴展,能夠一直滿足研究的需求8、在計算機視覺的姿態(tài)估計任務(wù)中,假設(shè)要估計一個物體在三維空間中的姿態(tài),例如估計一個機器人手臂的關(guān)節(jié)角度。以下哪種技術(shù)或方法可能被用于實現(xiàn)這一目標(biāo)?()A.基于立體視覺的方法,通過多個相機的觀測B.利用深度學(xué)習(xí)模型直接預(yù)測姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進(jìn)行估計D.隨機猜測物體的姿態(tài)9、在一個基于計算機視覺的工業(yè)質(zhì)量檢測系統(tǒng)中,需要檢測產(chǎn)品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對缺陷檢測最為有效?()A.邊緣檢測算法B.形態(tài)學(xué)操作C.閾值分割算法D.霍夫變換10、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進(jìn)行任何去噪處理,保留原始噪聲圖像11、目標(biāo)檢測是計算機視覺中的重要任務(wù)之一。假設(shè)要在一張城市街道的圖像中檢測出所有的行人和車輛,以下關(guān)于目標(biāo)檢測算法的描述,正確的是:()A.基于傳統(tǒng)的圖像處理方法的目標(biāo)檢測算法在復(fù)雜場景中表現(xiàn)優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)中的單階段目標(biāo)檢測算法比兩階段算法速度快,但精度較低C.目標(biāo)檢測算法只需要關(guān)注目標(biāo)的位置,不需要考慮目標(biāo)的類別D.目標(biāo)檢測的準(zhǔn)確率不受圖像質(zhì)量、光照條件和目標(biāo)大小變化的影響12、計算機視覺中的車牌識別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個高速公路收費站實現(xiàn)準(zhǔn)確的車牌識別,以下關(guān)于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運行D.車牌識別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)13、在計算機視覺的目標(biāo)跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個特定的目標(biāo)。假設(shè)要跟蹤一個在運動場上快速移動且形狀變化的運動員,同時存在其他相似物體的干擾。以下哪種目標(biāo)跟蹤算法在這種具有挑戰(zhàn)性的場景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C.基于深度學(xué)習(xí)的跟蹤D.基于均值漂移的跟蹤14、在計算機視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張不同視角拍攝的同一物體的圖像進(jìn)行對齊。以下關(guān)于圖像配準(zhǔn)方法的描述,正確的是:()A.基于特征點的配準(zhǔn)方法對圖像的旋轉(zhuǎn)、縮放和平移具有不變性,但特征點的提取容易出錯B.基于灰度的配準(zhǔn)方法計算簡單,但對光照變化和噪聲敏感C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法在圖像配準(zhǔn)中無法學(xué)習(xí)到有效的特征表示D.圖像配準(zhǔn)的精度只取決于配準(zhǔn)算法的選擇,與圖像的質(zhì)量和特征無關(guān)15、在計算機視覺的行人重識別任務(wù)中,即在不同攝像頭拍攝的圖像中識別出同一個行人,假設(shè)行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述16、圖像分類是計算機視覺中的常見任務(wù)之一。對于圖像分類模型的訓(xùn)練,以下說法錯誤的是()A.需要大量有標(biāo)注的圖像數(shù)據(jù)來學(xué)習(xí)不同類別的特征B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色C.模型的訓(xùn)練過程是不斷調(diào)整參數(shù)以最小化預(yù)測誤差的過程D.圖像分類模型一旦訓(xùn)練完成,就無法再對新的類別進(jìn)行學(xué)習(xí)和分類17、計算機視覺中的視覺注意力機制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺注意力機制的說法,不正確的是()A.視覺注意力機制可以根據(jù)圖像的特征和任務(wù)需求動態(tài)地選擇關(guān)注的區(qū)域B.注意力機制能夠提高模型的效率和性能,減少對無關(guān)信息的處理C.視覺注意力機制在圖像分類、目標(biāo)檢測和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺注意力機制的引入會增加模型的復(fù)雜度和計算量,降低模型的訓(xùn)練速度18、對于圖像的邊緣檢測任務(wù),假設(shè)要準(zhǔn)確檢測出圖像中物體的邊緣,同時抑制噪聲的影響。以下哪種邊緣檢測算子可能表現(xiàn)更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.隨機生成邊緣檢測結(jié)果19、計算機視覺在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見解。假設(shè)要分析一場足球比賽中球員的跑動軌跡和動作。以下關(guān)于計算機視覺在體育賽事中的描述,哪一項是不準(zhǔn)確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運動軌跡B.能夠?qū)η騿T的動作進(jìn)行分類,如傳球、射門和防守C.計算機視覺在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)20、計算機視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機B.工業(yè)線陣相機C.手機攝像頭D.監(jiān)控攝像頭21、在計算機視覺的姿態(tài)估計任務(wù)中,例如估計人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學(xué)習(xí)的回歸方法C.基于深度學(xué)習(xí)的分類方法D.以上都不是22、在一個基于計算機視覺的機器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來規(guī)劃機器人的路徑。以下哪種視覺導(dǎo)航方法可能更適合復(fù)雜動態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺里程計的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是23、計算機視覺中的圖像增強旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對比度、有噪聲的醫(yī)學(xué)圖像需要進(jìn)行增強處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波24、在計算機視覺的視頻分析中,需要處理連續(xù)的圖像幀。假設(shè)要分析一段監(jiān)控視頻中的人員行為,以下關(guān)于視頻分析方法的描述,哪一項是不正確的?()A.光流法可以用于計算相鄰幀之間的像素運動,從而跟蹤物體的運動軌跡B.可以通過對視頻幀進(jìn)行分類和檢測,來識別和分析人員的行為模式C.視頻分析需要考慮時間維度上的信息,不僅僅是單個圖像幀的特征D.視頻分析只適用于簡單的場景和行為,對于復(fù)雜的多人交互場景無法進(jìn)行有效的分析25、計算機視覺中的光流估計是計算圖像中像素的運動信息。以下關(guān)于光流估計的敘述,不正確的是()A.光流估計可以用于視頻中的運動分析、目標(biāo)跟蹤和動作識別等任務(wù)B.基于深度學(xué)習(xí)的光流估計方法在精度和速度上都有了很大的提升C.光流估計只對勻速運動的物體有效,對于復(fù)雜的非勻速運動估計不準(zhǔn)確D.光流估計的結(jié)果可以為后續(xù)的計算機視覺任務(wù)提供重要的運動線索26、在圖像分類任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對一組包含不同動物的圖像進(jìn)行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準(zhǔn)確率一定越高B.數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、裁剪等,對模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準(zhǔn)確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計特征27、在計算機視覺的圖像超分辨率重建中,提高低分辨率圖像的清晰度。假設(shè)要將一張模糊的圖像重建為清晰的高分辨率圖像,以下關(guān)于圖像超分辨率重建方法的描述,哪一項是不正確的?()A.基于插值的方法通過在像素之間插入新的值來增加圖像的分辨率,但可能會導(dǎo)致圖像模糊B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)低分辨率圖像和高分辨率圖像之間的映射關(guān)系,重建出更清晰的圖像C.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制D.為了獲得更好的重建效果,可以結(jié)合多種超分辨率重建方法或使用先驗知識28、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有重要作用。假設(shè)要在VR環(huán)境中實現(xiàn)真實感的物體交互,以下哪種技術(shù)可能對準(zhǔn)確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺B.光場成像C.結(jié)構(gòu)光D.運動捕捉29、計算機視覺中的行人檢測是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個擁擠的公共場所中準(zhǔn)確檢測出行人,同時要排除其他類似物體的干擾。以下哪種行人檢測方法在這種復(fù)雜環(huán)境下具有更高的檢測率和較低的誤檢率?()A.基于HOG特征的行人檢測B.基于深度學(xué)習(xí)的行人檢測C.基于運動信息的行人檢測D.基于形狀模板的行人檢測30、計算機視覺在體育賽事分析中的應(yīng)用可以提供更深入的比賽洞察。假設(shè)要分析一場足球比賽中球員的跑位和傳球模式,以下關(guān)于體育賽事計算機視覺應(yīng)用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰(zhàn)術(shù)和策略B.球員的速度和加速度等動態(tài)信息對比賽分析的價值不大C.結(jié)合深度學(xué)習(xí)和軌跡分析技術(shù)可以更有效地挖掘比賽中的關(guān)鍵模式和趨勢D.比賽場地的光照和攝像機視角對計算機視覺分析的結(jié)果沒有影響二、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)設(shè)計一個程序,通過計算機視覺識別不同款式的腰帶。2、(本題5分)基于計算機視覺的智能交通信號燈控制系統(tǒng),根據(jù)實時交通流量調(diào)整信號燈時長。3、(本題5分)在安防領(lǐng)域,利用計算機視覺檢測異常行為和入侵事件。4、(本題5分)基于計算機視覺的智能垃圾分類機器人,實現(xiàn)垃圾的自動分類和投放。5、(本題5分)開發(fā)一個能夠識別不同種類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論