數(shù)學(xué)必修5試題及答案_第1頁(yè)
數(shù)學(xué)必修5試題及答案_第2頁(yè)
數(shù)學(xué)必修5試題及答案_第3頁(yè)
數(shù)學(xué)必修5試題及答案_第4頁(yè)
數(shù)學(xué)必修5試題及答案_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)必修5試題及答案

單項(xiàng)選擇題(每題2分,共10題)1.在等差數(shù)列\(zhòng)(\{a_n\}\)中,\(a_1=1\),\(a_3=5\),則公差\(d\)為()A.1B.2C.3D.42.等比數(shù)列\(zhòng)(\{a_n\}\)中,\(a_2=2\),\(a_5=16\),則公比\(q\)為()A.-2B.2C.4D.83.不等式\(x^2-3x+2<0\)的解集是()A.\(\{x|x<1\)或\(x>2\}\)B.\(\{x|1<x<2\}\)C.\(\{x|x<-2\)或\(x>-1\}\)D.\(\{x|-2<x<-1\}\)4.在\(\triangleABC\)中,\(A=30^{\circ}\),\(a=1\),\(b=\sqrt{3}\),則\(B\)等于()A.\(60^{\circ}\)B.\(60^{\circ}\)或\(120^{\circ}\)C.\(30^{\circ}\)D.\(30^{\circ}\)或\(150^{\circ}\)5.數(shù)列\(zhòng)(\{a_n\}\)的通項(xiàng)公式\(a_n=2n-1\),則其前\(n\)項(xiàng)和\(S_n\)為()A.\(n^2\)B.\(n^2+1\)C.\(n(n+1)\)D.\(n(n-1)\)6.已知\(x>0\),\(y>0\),且\(x+y=1\),則\(\frac{1}{x}+\frac{1}{y}\)的最小值是()A.2B.4C.6D.87.在\(\triangleABC\)中,\(a=3\),\(b=5\),\(c=7\),則\(\cosC\)的值為()A.\(\frac{1}{2}\)B.\(-\frac{1}{2}\)C.\(\frac{11}{14}\)D.\(-\frac{11}{14}\)8.等比數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和\(S_n=2^n-1\),則\(a_1^2+a_2^2+\cdots+a_n^2\)等于()A.\((2^n-1)^2\)B.\(\frac{1}{3}(2^n-1)^2\)C.\(4^n-1\)D.\(\frac{1}{3}(4^n-1)\)9.已知\(x\),\(y\)滿足約束條件\(\begin{cases}x+y\leq2\\x\geq0\\y\geq0\end{cases}\),則\(z=3x+y\)的最大值為()A.0B.2C.4D.610.等差數(shù)列\(zhòng)(\{a_n\}\)中,\(a_{10}<0\),\(a_{11}>0\),且\(a_{11}>|a_{10}|\),\(S_n\)為前\(n\)項(xiàng)和,則()A.\(S_1\),\(S_2\),\(\cdots\),\(S_{10}\)都小于0,\(S_{11}\),\(S_{12}\),\(\cdots\)都大于0B.\(S_1\),\(S_2\),\(\cdots\),\(S_{19}\)都小于0,\(S_{20}\),\(S_{21}\),\(\cdots\)都大于0C.\(S_1\),\(S_2\),\(\cdots\),\(S_{5}\)都小于0,\(S_{6}\),\(S_{7}\),\(\cdots\)都大于0D.\(S_1\),\(S_2\),\(\cdots\),\(S_{20}\)都小于0,\(S_{21}\),\(S_{22}\),\(\cdots\)都大于0多項(xiàng)選擇題(每題2分,共10題)1.下列關(guān)于等差數(shù)列的說(shuō)法正確的是()A.若\(\{a_n\}\)是等差數(shù)列,則\(a_{n+1}-a_n\)是常數(shù)B.等差數(shù)列\(zhòng)(\{a_n\}\)的通項(xiàng)公式\(a_n\)是關(guān)于\(n\)的一次函數(shù)C.若\(a\),\(b\),\(c\)成等差數(shù)列,則\(2b=a+c\)D.等差數(shù)列的前\(n\)項(xiàng)和\(S_n\)一定是二次函數(shù)2.對(duì)于等比數(shù)列\(zhòng)(\{a_n\}\),以下說(shuō)法正確的是()A.若\(a_1>0\),\(q>1\),則\(\{a_n\}\)是遞增數(shù)列B.若\(a_1<0\),\(0<q<1\),則\(\{a_n\}\)是遞增數(shù)列C.等比數(shù)列中不可能有\(zhòng)(0\)項(xiàng)D.若\(m\),\(n\),\(p\),\(q\inN^+\),且\(m+n=p+q\),則\(a_m\cdota_n=a_p\cdota_q\)3.下列不等式中,正確的是()A.\(x^2+1\geq2x\)(\(x\inR\))B.\(x+\frac{1}{x}\geq2\)(\(x>0\))C.\(a^2+b^2\geq2ab\)(\(a\),\(b\inR\))D.\(\frac{a+b}{2}\geq\sqrt{ab}\)(\(a\),\(b>0\))4.在\(\triangleABC\)中,根據(jù)下列條件解三角形,其中有一解的是()A.\(a=7\),\(b=3\),\(B=30^{\circ}\)B.\(a=5\),\(b=4\),\(A=45^{\circ}\)C.\(a=6\),\(b=9\),\(A=45^{\circ}\)D.\(b=6\),\(c=9\),\(C=60^{\circ}\)5.已知數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和\(S_n=n^2+n\),則()A.\(a_1=2\)B.\(a_n=2n\)C.數(shù)列\(zhòng)(\{a_n\}\)是等差數(shù)列D.數(shù)列\(zhòng)(\{a_n\}\)是等比數(shù)列6.若\(x\),\(y\)滿足約束條件\(\begin{cases}x-y\leq0\\x+y-2\leq0\\x\geq0\end{cases}\),則()A.\(z=x+2y\)的最大值為4B.\(z=x-y\)的最大值為0C.\(z=2x+y\)的最大值為3D.\(z=-x+y\)的最大值為27.設(shè)等差數(shù)列\(zhòng)(\{a_n\}\)的公差為\(d\),前\(n\)項(xiàng)和為\(S_n\),若\(S_6>S_7>S_5\),則()A.\(d<0\)B.\(a_7=0\)C.\(S_9>S_3\)D.\(S_{11}>0\)8.等比數(shù)列\(zhòng)(\{a_n\}\)中,\(a_1=1\),公比\(q=2\),則()A.\(a_3=4\)B.\(a_n=2^{n-1}\)C.前\(n\)項(xiàng)和\(S_n=2^n-1\)D.\(a_2\),\(a_4\),\(a_6\)成等比數(shù)列9.已知\(a\),\(b\),\(c\)是\(\triangleABC\)的三邊,則下列式子成立的是()A.\(a^2=b^2+c^2-2bc\cosA\)B.\(b^2=a^2+c^2-2ac\cosB\)C.\(c^2=a^2+b^2-2ab\cosC\)D.\(\cosA=\frac{b^2+c^2-a^2}{2bc}\)10.下列關(guān)于數(shù)列的說(shuō)法正確的是()A.常數(shù)列既是等差數(shù)列也是等比數(shù)列B.若數(shù)列\(zhòng)(\{a_n\}\)的通項(xiàng)公式\(a_n=3n+2\),則\(\{a_n\}\)是等差數(shù)列C.若數(shù)列\(zhòng)(\{a_n\}\)滿足\(a_{n+1}=2a_n\),則\(\{a_n\}\)是等比數(shù)列D.等差數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和\(S_n\),\(S_{2n}-S_n\),\(S_{3n}-S_{2n}\)仍成等差數(shù)列判斷題(每題2分,共10題)1.若\(a\),\(b\),\(c\)成等差數(shù)列,則\(a^2\),\(b^2\),\(c^2\)也成等差數(shù)列。()2.等比數(shù)列\(zhòng)(\{a_n\}\)中,\(a_1>0\),\(q>1\),則\(a_n\)單調(diào)遞增。()3.不等式\(x^2-4x+4>0\)的解集是\(x\neq2\)。()4.在\(\triangleABC\)中,\(a>b\)是\(A>B\)的充要條件。()5.數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和\(S_n=3^n+1\),則\(a_n=2\cdot3^{n-1}\)。()6.若\(x>0\),\(y>0\),且\(x+2y=1\),則\(\frac{1}{x}+\frac{1}{y}\)的最小值是\(3+2\sqrt{2}\)。()7.等差數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和\(S_n\),若\(S_{10}=S_{20}\),則\(S_{30}=0\)。()8.等比數(shù)列\(zhòng)(\{a_n\}\)中,\(a_5=a_1\cdotq^5\)。()9.不等式\(ax^2+bx+c>0\)恒成立的條件是\(a>0\)且\(\Delta=b^2-4ac<0\)。()10.在\(\triangleABC\)中,\(\sinA>\sinB\)等價(jià)于\(a>b\)。()簡(jiǎn)答題(每題5分,共4題)1.求等差數(shù)列\(zhòng)(\{a_n\}\)的通項(xiàng)公式,已知\(a_1=1\),\(a_3+a_5=14\)。答案:設(shè)公差為\(d\),\(a_3=a_1+2d\),\(a_5=a_1+4d\),由\(a_3+a_5=14\)可得\(2a_1+6d=14\),把\(a_1=1\)代入得\(2+6d=14\),解得\(d=2\),所以\(a_n=a_1+(n-1)d=1+2(n-1)=2n-1\)。2.已知等比數(shù)列\(zhòng)(\{a_n\}\)中,\(a_2=2\),\(a_5=16\),求其前\(n\)項(xiàng)和\(S_n\)。答案:先求公比\(q\),\(q^3=\frac{a_5}{a_2}=\frac{16}{2}=8\),則\(q=2\),又\(a_1=\frac{a_2}{q}=1\),等比數(shù)列前\(n\)項(xiàng)和\(S_n=\frac{a_1(1-q^n)}{1-q}=\frac{1-2^n}{1-2}=2^n-1\)。3.解不等式\(x^2-5x+6\geq0\)。答案:因式分解得\((x-2)(x-3)\geq0\),則\(\begin{cases}x-2\geq0\\x-3\geq0\end{cases}\)或\(\begin{cases}x-2\leq0\\x-3\leq0\end{cases}\),解得\(x\leq2\)或\(x\geq3\),解集為\(\{x|x\leq2\)或\(x\geq3\}\)。4.在\(\triangleABC\)中,\(a=3\),\(b=4\),\(C=60^{\circ}\),求\(c\)的值。答案:根據(jù)余弦定理\(c^2=a^2+b^2-2ab\cosC\),把\(a=3\),\(b=4\),\(C=60^{\circ}\)代入得\(c^2=3^2+4^2-2\times3\times4\times\frac{1}{2}=13\),所以\(c=\sqrt{13}\)。討論

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論