2023-2024學年浙江省寧波市鄞州區(qū)東錢湖、李關(guān)弟、實驗中學中考沖刺卷數(shù)學試題含解析_第1頁
2023-2024學年浙江省寧波市鄞州區(qū)東錢湖、李關(guān)弟、實驗中學中考沖刺卷數(shù)學試題含解析_第2頁
2023-2024學年浙江省寧波市鄞州區(qū)東錢湖、李關(guān)弟、實驗中學中考沖刺卷數(shù)學試題含解析_第3頁
2023-2024學年浙江省寧波市鄞州區(qū)東錢湖、李關(guān)弟、實驗中學中考沖刺卷數(shù)學試題含解析_第4頁
2023-2024學年浙江省寧波市鄞州區(qū)東錢湖、李關(guān)弟、實驗中學中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年浙江省寧波市鄞州區(qū)東錢湖、李關(guān)弟、實驗中學中考沖刺卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,DE∥BC,若,則等于()A. B. C. D.2.△ABC在正方形網(wǎng)格中的位置如圖所示,則cosB的值為()A. B. C. D.23.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.4.如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.5.若二次函數(shù)y=ax2+bx+c的x與y的部分對應值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)6.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.7.在六張卡片上分別寫有,π,1.5,5,0,六個數(shù),從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率是()A. B. C. D.8.如果實數(shù)a=,且a在數(shù)軸上對應點的位置如圖所示,其中正確的是()A.B.C.D.9.我國古代數(shù)學著作《九章算術(shù)》中,將底面是直角三角形,且側(cè)棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個小正方形的邊長均為1),則該“塹堵”的側(cè)面積為()A.16+16 B.16+8 C.24+16 D.4+410.如圖是二次函數(shù)的部分圖象,由圖象可知不等式的解集是()A. B. C.且 D.x<-1或x>5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在長方形ABCD中,AF⊥BD,垂足為E,AF交BC于點F,連接DF.圖中有全等三角形_____對,有面積相等但不全等的三角形_____對.12.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.13.如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB延長線于點F,則EF的長為__________.14.若點(,1)與(﹣2,b)關(guān)于原點對稱,則=_______.15.如圖,要使△ABC∽△ACD,需補充的條件是_____.(只要寫出一種)16.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點O;(2)以點O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據(jù)是__________________________________.三、解答題(共8題,共72分)17.(8分)如圖,在平行四邊形ABCD中,E、F為AD上兩點,AE=EF=FD,連接BE、CF并延長,交于點G,GB=GC.(1)求證:四邊形ABCD是矩形;(1)若△GEF的面積為1.①求四邊形BCFE的面積;②四邊形ABCD的面積為.18.(8分)如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F(1)證明:PC=PE;(2)求∠CPE的度數(shù);(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.19.(8分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.20.(8分)十八屆五中全會出臺了全面實施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠發(fā)展的戰(zhàn)略高度作出的促進人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應政府號召,準備生育兩個小孩(假設生男生女機會均等,且與順序無關(guān)).(1)該家庭生育兩胎,假設每胎都生育一個小孩,求這兩個小孩恰好都是女孩的概率;(2)該家庭生育兩胎,假設第一胎生育一個小孩,且第二胎生育一對雙胞胎,求這三個小孩中恰好是2女1男的概率.21.(8分)學生對待學習的態(tài)度一直是教育工作者關(guān)注的問題之一.為此,某區(qū)教委對該區(qū)部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:此次抽樣調(diào)查中,共調(diào)查了名學生;將圖①補充完整;求出圖②中C級所占的圓心角的度數(shù).22.(10分)如圖,在中,,且,,為的中點,于點,連結(jié),.(1)求證:;(2)當為何值時,的值最大?并求此時的值.23.(12分)某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.種類ABCDEF上學方式電動車私家車公共交通自行車步行其他某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖根據(jù)以上信息,回答下列問題:參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).24.“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析::∵DE∥BC,∴,故選C.考點:平行線分線段成比例.2、A【解析】

解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.3、D【解析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據(jù)等邊對等角的性質(zhì)可得∠A=∠ACD,然后根據(jù)正切函數(shù)的定義列式求出∠A的正切值,即為tan∠ACD的值.【詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【點睛】本題考查了銳角三角函數(shù)的定義,直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊對等角的性質(zhì),求出∠A=∠ACD是解本題的關(guān)鍵.4、B【解析】

由平行四邊形性質(zhì)得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數(shù)求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據(jù)勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質(zhì)和判定、平行線的性質(zhì),三角函數(shù)的運用;熟練掌握平行四邊形的性質(zhì),勾股定理,判斷出AB=CE是解決問題的關(guān)鍵.5、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點坐標.詳解:當或時,,當時,,,解得,二次函數(shù)解析式為,拋物線的頂點坐標為,故選C.點睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.6、A【解析】

根據(jù)“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應的方程組,本題得以解決.【詳解】由題意可得,,故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應的方程組.7、B【解析】

無限不循環(huán)小數(shù)叫無理數(shù),無理數(shù)通常有以下三種形式:一是開方開不盡的數(shù),二是圓周率π,三是構(gòu)造的一些不循環(huán)的數(shù),如1.010010001……(兩個1之間0的個數(shù)一次多一個).然后用無理數(shù)的個數(shù)除以所有書的個數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率.【詳解】∵這組數(shù)中無理數(shù)有,共2個,∴卡片上的數(shù)為無理數(shù)的概率是.故選B.【點睛】本題考查了無理數(shù)的定義及概率的計算.8、C【解析】分析:估計的大小,進而在數(shù)軸上找到相應的位置,即可得到答案.詳解:由被開方數(shù)越大算術(shù)平方根越大,即故選C.點睛:考查了實數(shù)與數(shù)軸的的對應關(guān)系,以及估算無理數(shù)的大小,解決本題的關(guān)鍵是估計的大小.9、A【解析】

分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個側(cè)面,另外兩個側(cè)面全等,是長×高=×4=,所以側(cè)面積之和為×2+4×4=16+16,所以答案選擇A項.【點睛】本題考查了由三視圖求側(cè)面積,畫出該圖的立體圖形是解決本題的關(guān)鍵.10、D【解析】利用二次函數(shù)的對稱性,可得出圖象與x軸的另一個交點坐標,結(jié)合圖象可得出的解集:由圖象得:對稱軸是x=2,其中一個點的坐標為(1,0),∴圖象與x軸的另一個交點坐標為(-1,0).由圖象可知:的解集即是y<0的解集,∴x<-1或x>1.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、11【解析】

根據(jù)長方形的對邊相等,每一個角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“邊角邊”證明Rt△ABD和Rt△CDB全等;根據(jù)等底等高的三角形面積相等解答.【詳解】有,Rt△ABD≌Rt△CDB,理由:在長方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD與△BFA,△ABD與△AFD,△ABE與△DFE,△AFD與△BCD面積相等,但不全等.故答案為:1;1.【點睛】本題考查了全等三角形的判定,長方形的性質(zhì),以及等底等高的三角形的面積相等.12、3<d<7【解析】

若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關(guān)系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關(guān)系,解題的關(guān)鍵是熟練的掌握圓與圓的位置關(guān)系.13、6【解析】

利用正方形的性質(zhì)和勾股定理可得AC的長,由角平分線的性質(zhì)和平行線的性質(zhì)可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長.【詳解】解:∵四邊形ABCD為正方形,且邊長為3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=614、.【解析】

∵點(a,1)與(﹣2,b)關(guān)于原點對稱,∴b=﹣1,a=2,∴==.故答案為.考點:關(guān)于原點對稱的點的坐標.15、∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB【解析】試題分析:∵∠DAC=∠CAB∴當∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB時,△ABC∽△ACD.故答案為∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.考點:1.相似三角形的判定;2.開放型.16、正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【解析】

利用正方形的性質(zhì)得到OA=OB=OC=OD,則以點O為圓心,OA長為半徑作⊙O,點B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.三、解答題(共8題,共72分)17、(1)證明見解析;(1)①16;②14;【解析】

(1)根據(jù)平行四邊形的性質(zhì)得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根據(jù)全等三角形的性質(zhì)得到∠A=∠D,根據(jù)平行線的性質(zhì)得到∠A+∠D=180°,由矩形的判定定理即可得到結(jié)論;(1)①根據(jù)相似三角形的性質(zhì)得到,求得△GBC的面積為18,于是得到四邊形BCFE的面積為16;②根據(jù)四邊形BCFE的面積為16,列方程得到BC?AB=14,即可得到結(jié)論.【詳解】(1)證明:∵GB=GC,∴∠GBC=∠GCB,在平行四邊形ABCD中,∵AD∥BC,AB=DC,AB∥CD,∴GB-GE=GC-GF,∴BE=CF,在△ABE與△DCF中,,∴△ABE≌△DCF,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴∠A=∠D=90°,∴四邊形ABCD是矩形;(1)①∵EF∥BC,∴△GFE∽△GBC,∵EF=AD,∴EF=BC,∴,∵△GEF的面積為1,∴△GBC的面積為18,∴四邊形BCFE的面積為16,;②∵四邊形BCFE的面積為16,∴(EF+BC)?AB=×BC?AB=16,∴BC?AB=14,∴四邊形ABCD的面積為14,故答案為:14.【點睛】本題考查了相似三角形的判定和性質(zhì),矩形的判定和性質(zhì),圖形面積的計算,全等三角形的判定和性質(zhì),證得△GFE∽△GBC是解題的關(guān)鍵.18、(1)證明見解析(2)90°(3)AP=CE【解析】

(1)、根據(jù)正方形得出AB=BC,∠ABP=∠CBP=45°,結(jié)合PB=PB得出△ABP≌△CBP,從而得出結(jié)論;(2)、根據(jù)全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據(jù)PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.【詳解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等邊三角形,∴PC=CE,∴AP=CE考點:三角形全等的證明19、(1)證明見解析;(2)4.【解析】

(1)已知四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形即可判定四邊形ACDE是平行四邊形;(2)連接EC,易證△BEC是直角三角形,解直角三角形即可解決問題.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四邊形ACDE是平行四邊形.(2)如圖,連接EC.∵AC=AB=AE,∴△EBC是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【點睛】本題考查平行四邊形的性質(zhì)和判定、直角三角形的判定、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.20、(1)P(兩個小孩都是女孩)=;(2)P(三個小孩中恰好是2女1男)=.【解析】

(1)畫出樹狀圖即可解題,(2)畫出樹狀圖即可解題.【詳解】(1)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有4種等可能結(jié)果,而這兩個小孩恰好都是女孩的有1種可能,∴P(兩個小孩都是女孩)=.(2)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有8種等可能結(jié)果,其中這三個小孩中恰好是2女1男的有3種結(jié)果,∴P(三個小孩中恰好是2女1男)=.【點睛】本題考查了畫樹狀圖求解概率,中等難度,畫出樹狀圖找到所有可能性是解題關(guān)鍵.21、(1)200,(2)圖見試題解析(3)540【解析】

試題分析:(1)根據(jù)A級的人數(shù)與所占的百分比列式進行計算即可求出被調(diào)查的學生人數(shù);(2)根據(jù)總?cè)藬?shù)求出C級的人數(shù),然后補全條形統(tǒng)計圖即可;(3)1減去A、B兩級所占的百分比乘以360°即可得出結(jié)論.試題解析::(1)調(diào)查的學生人數(shù)為:=200名;(2)C級學生人數(shù)為:200-50-120=30名,補全統(tǒng)計圖如圖;(3)學習態(tài)度達標的人數(shù)為:360×[1-(25%+60%]=54°.答:求出圖②中C級所占的圓心角的度數(shù)為54°.考點:條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用22、(1)見解析;(2)時,的值最大,【解析】

(1)延長BA、CF交于點G,利用可證△AFG≌△DFC得出,,根據(jù),可證出,得出,利用,,點是的中點,得出,,則有,可得出,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論