嘉興職業(yè)技術(shù)學(xué)院《信息分析》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
嘉興職業(yè)技術(shù)學(xué)院《信息分析》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
嘉興職業(yè)技術(shù)學(xué)院《信息分析》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
嘉興職業(yè)技術(shù)學(xué)院《信息分析》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
嘉興職業(yè)技術(shù)學(xué)院《信息分析》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁嘉興職業(yè)技術(shù)學(xué)院

《信息分析》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績,以下關(guān)于假設(shè)檢驗(yàn)的描述,正確的是:()A.不設(shè)定原假設(shè)和備擇假設(shè),直接進(jìn)行檢驗(yàn)B.忽略檢驗(yàn)的顯著性水平,隨意得出結(jié)論C.正確設(shè)定原假設(shè)和備擇假設(shè),選擇合適的檢驗(yàn)統(tǒng)計(jì)量,根據(jù)顯著性水平和樣本數(shù)據(jù)進(jìn)行推斷,并解釋檢驗(yàn)結(jié)果的實(shí)際意義D.只關(guān)注檢驗(yàn)結(jié)果是否拒絕原假設(shè),不考慮效應(yīng)大小和實(shí)際應(yīng)用價(jià)值2、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的算法和技術(shù)有很多,其中神經(jīng)網(wǎng)絡(luò)是一種常用的算法。以下關(guān)于神經(jīng)網(wǎng)絡(luò)的描述中,錯(cuò)誤的是?()A.神經(jīng)網(wǎng)絡(luò)可以用于分類、回歸和聚類等問題B.神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)包括輸入層、隱藏層和輸出層C.神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程需要大量的數(shù)據(jù)和計(jì)算資源D.神經(jīng)網(wǎng)絡(luò)的結(jié)果是確定性的,不會(huì)受到數(shù)據(jù)噪聲和異常值的影響3、在數(shù)據(jù)分析中,對于一個(gè)包含多個(gè)變量的數(shù)據(jù)集,需要確定哪些變量對目標(biāo)變量的影響最大。假設(shè)變量之間存在復(fù)雜的非線性關(guān)系,以下哪種方法可能有助于進(jìn)行變量篩選和特征工程?()A.逐步回歸B.隨機(jī)森林C.支持向量機(jī)D.以上都是4、數(shù)據(jù)分析在當(dāng)今的各個(gè)領(lǐng)域都發(fā)揮著重要作用。在數(shù)據(jù)收集階段,以下關(guān)于數(shù)據(jù)質(zhì)量的描述,不準(zhǔn)確的是()A.數(shù)據(jù)質(zhì)量包括準(zhǔn)確性、完整性、一致性和時(shí)效性等多個(gè)方面B.高質(zhì)量的數(shù)據(jù)能夠?yàn)楹罄m(xù)的分析提供可靠的基礎(chǔ),確保分析結(jié)果的有效性C.數(shù)據(jù)收集時(shí)只需要關(guān)注數(shù)據(jù)的數(shù)量,質(zhì)量問題可以在后續(xù)的分析中進(jìn)行處理和修正D.為了保證數(shù)據(jù)質(zhì)量,需要在收集過程中制定明確的數(shù)據(jù)標(biāo)準(zhǔn)和規(guī)范,并進(jìn)行有效的數(shù)據(jù)驗(yàn)證5、在進(jìn)行數(shù)據(jù)分析時(shí),若數(shù)據(jù)的樣本量較小,以下哪種統(tǒng)計(jì)方法需要謹(jǐn)慎使用?()A.方差分析B.t檢驗(yàn)C.非參數(shù)檢驗(yàn)D.回歸分析6、在數(shù)據(jù)清洗過程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再?zèng)Q定處理方式7、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)我們要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的考試成績,以下哪種假設(shè)檢驗(yàn)方法可能適用?()A.t檢驗(yàn)B.方差分析C.卡方檢驗(yàn)D.以上都有可能,取決于數(shù)據(jù)特點(diǎn)8、在數(shù)據(jù)分析中,對于高維度的數(shù)據(jù),例如基因表達(dá)數(shù)據(jù)、圖像數(shù)據(jù)等,需要進(jìn)行降維處理以簡化分析。以下哪種降維方法可能是常用的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.局部線性嵌入(LLE)D.以上都是9、對于一個(gè)包含大量數(shù)值型數(shù)據(jù)的數(shù)據(jù)集,在進(jìn)行數(shù)據(jù)分析之前,需要判斷數(shù)據(jù)是否符合正態(tài)分布。以下哪種方法常用于檢驗(yàn)數(shù)據(jù)的正態(tài)性?()A.Q-Q圖B.卡方檢驗(yàn)C.t檢驗(yàn)D.F檢驗(yàn)10、在數(shù)據(jù)分析中,異常值檢測對于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法11、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要分析股票市場數(shù)據(jù),需要從歷史價(jià)格、成交量等原始數(shù)據(jù)中構(gòu)建有效的特征。以下哪種特征構(gòu)建方法在股票數(shù)據(jù)分析中可能最為有效?()A.基于時(shí)間序列的特征提取B.基于統(tǒng)計(jì)的特征構(gòu)建C.基于主成分分析的特征降維D.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)12、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過程。假設(shè)你在一個(gè)電商網(wǎng)站的交易數(shù)據(jù)中進(jìn)行數(shù)據(jù)挖掘,旨在發(fā)現(xiàn)客戶的購買行為模式。以下關(guān)于數(shù)據(jù)挖掘技術(shù)的選擇,哪一項(xiàng)是最有可能有效的?()A.使用關(guān)聯(lián)規(guī)則挖掘,找出經(jīng)常一起購買的商品組合B.應(yīng)用決策樹算法進(jìn)行分類,預(yù)測客戶是否會(huì)購買某類商品C.利用聚類分析將客戶分為不同的群體,基于群體特征進(jìn)行營銷D.以上三種技術(shù)結(jié)合使用,全面挖掘數(shù)據(jù)中的潛在信息13、在數(shù)據(jù)分析中,模型的選擇和調(diào)優(yōu)需要根據(jù)數(shù)據(jù)和問題的特點(diǎn)進(jìn)行。假設(shè)我們要解決一個(gè)分類問題。以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.不同的模型在不同的數(shù)據(jù)集上表現(xiàn)可能不同,需要進(jìn)行試驗(yàn)和比較B.可以通過調(diào)整模型的超參數(shù)來優(yōu)化模型的性能C.模型越復(fù)雜,性能就一定越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.可以使用網(wǎng)格搜索、隨機(jī)搜索等方法進(jìn)行超參數(shù)調(diào)優(yōu)14、在數(shù)據(jù)分析中,聚類分析用于將數(shù)據(jù)分組。假設(shè)要對客戶進(jìn)行細(xì)分,以下關(guān)于聚類分析的描述,哪一項(xiàng)是不正確的?()A.K-Means聚類算法需要預(yù)先指定聚類的數(shù)量B.層次聚類可以生成層次結(jié)構(gòu)的聚類結(jié)果,便于觀察不同層次的分組情況C.聚類分析的結(jié)果只取決于算法和數(shù)據(jù),不受初始條件和參數(shù)的影響D.可以通過評估聚類的緊密度和分離度來選擇最優(yōu)的聚類方案15、在進(jìn)行數(shù)據(jù)融合時(shí),將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會(huì)引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對于不同結(jié)構(gòu)的數(shù)據(jù)源無法進(jìn)行融合16、在數(shù)據(jù)挖掘中,關(guān)聯(lián)規(guī)則挖掘是一種常見的方法。以下關(guān)于關(guān)聯(lián)規(guī)則的描述,正確的是:()A.關(guān)聯(lián)規(guī)則只能用于發(fā)現(xiàn)商品之間的購買關(guān)聯(lián)B.支持度表示同時(shí)購買兩種商品的顧客比例C.置信度越高,說明規(guī)則的可靠性越強(qiáng)D.提升度小于1時(shí),表示兩種商品存在負(fù)相關(guān)關(guān)系17、在數(shù)據(jù)分析中,模型選擇和調(diào)優(yōu)是提高性能的關(guān)鍵步驟。假設(shè)要在多個(gè)分類模型中選擇最優(yōu)的模型,以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過交叉驗(yàn)證等技術(shù)來評估不同模型在不同參數(shù)下的性能B.網(wǎng)格搜索和隨機(jī)搜索是常用的參數(shù)調(diào)優(yōu)方法,可以找到較優(yōu)的參數(shù)組合C.模型的復(fù)雜度越高,性能就越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.結(jié)合業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),選擇適合的模型和調(diào)優(yōu)方法18、數(shù)據(jù)分析中的因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投放是否導(dǎo)致銷售額增長,以下關(guān)于因果推斷方法的描述,正確的是:()A.僅僅基于相關(guān)性分析就得出因果結(jié)論,不考慮其他潛在因素B.不進(jìn)行實(shí)驗(yàn)設(shè)計(jì)和控制變量,直接觀察數(shù)據(jù)C.采用隨機(jī)對照實(shí)驗(yàn)、工具變量法、雙重差分法等因果推斷方法,控制混雜因素,進(jìn)行嚴(yán)謹(jǐn)?shù)姆治龊屯茢?,并評估因果關(guān)系的強(qiáng)度和可靠性D.認(rèn)為因果關(guān)系是顯而易見的,不需要進(jìn)行專門的分析和驗(yàn)證19、數(shù)據(jù)可視化在數(shù)據(jù)分析中有助于直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)的銷售額分布情況,以下關(guān)于數(shù)據(jù)可視化選擇的描述,正確的是:()A.使用折線圖,因?yàn)樗軌蚯逦仫@示銷售額隨時(shí)間的變化趨勢B.采用柱狀圖,能直觀對比不同地區(qū)銷售額的差異C.選擇餅圖,以便準(zhǔn)確呈現(xiàn)各地區(qū)銷售額占總銷售額的比例D.運(yùn)用散點(diǎn)圖,可分析銷售額與其他相關(guān)因素的關(guān)系20、在數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)分析師需要與不同部門進(jìn)行溝通合作。以下關(guān)于跨部門溝通的描述,錯(cuò)誤的是:()A.明確各部門的需求和期望有助于提高合作效率B.數(shù)據(jù)分析師應(yīng)該主導(dǎo)整個(gè)項(xiàng)目,無需考慮其他部門的意見C.建立良好的溝通機(jī)制可以及時(shí)解決問題和避免沖突D.理解不同部門的業(yè)務(wù)知識(shí)對于數(shù)據(jù)分析的結(jié)果應(yīng)用至關(guān)重要21、在數(shù)據(jù)分析中,數(shù)據(jù)分析的結(jié)果需要進(jìn)行解釋和評估。以下關(guān)于結(jié)果解釋和評估的描述中,錯(cuò)誤的是?()A.結(jié)果解釋應(yīng)該結(jié)合問題的背景和目的,進(jìn)行合理的分析和推斷B.結(jié)果評估應(yīng)該使用客觀的指標(biāo)和方法,進(jìn)行準(zhǔn)確的評價(jià)和判斷C.結(jié)果解釋和評估可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿足不同的需求D.結(jié)果解釋和評估只需要關(guān)注數(shù)據(jù)分析的結(jié)果,無需考慮數(shù)據(jù)的質(zhì)量和可靠性22、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的算法和模型需要考慮數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,其中一個(gè)類別占比極少,以下哪種方法可以處理這種不平衡問題?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是23、數(shù)據(jù)分析中的生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者的生存時(shí)間。以下關(guān)于生存分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以計(jì)算生存率、中位生存時(shí)間等指標(biāo)B.Cox比例風(fēng)險(xiǎn)模型常用于生存分析中的風(fēng)險(xiǎn)因素評估C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒有應(yīng)用D.可以考慮協(xié)變量對生存時(shí)間的影響24、在數(shù)據(jù)分析中,如果數(shù)據(jù)存在偏差,可能會(huì)導(dǎo)致分析結(jié)果不準(zhǔn)確。以下哪種情況可能導(dǎo)致數(shù)據(jù)偏差?()A.抽樣方法不合理B.數(shù)據(jù)錄入錯(cuò)誤C.樣本量過小D.以上都是25、數(shù)據(jù)分析中的數(shù)據(jù)血緣追蹤用于了解數(shù)據(jù)的來源和流向。假設(shè)要追蹤一個(gè)分析報(bào)告中數(shù)據(jù)的演變過程,以下關(guān)于數(shù)據(jù)血緣追蹤的描述,正確的是:()A.不記錄數(shù)據(jù)的處理步驟和轉(zhuǎn)換過程,無法進(jìn)行血緣追蹤B.簡單地記錄部分?jǐn)?shù)據(jù)的來源,不考慮整個(gè)流程C.建立完善的數(shù)據(jù)血緣管理系統(tǒng),記錄數(shù)據(jù)的采集、清洗、轉(zhuǎn)換、聚合等全過程,以便清晰地了解數(shù)據(jù)的來龍去脈和影響范圍D.認(rèn)為數(shù)據(jù)血緣追蹤是額外的工作,對數(shù)據(jù)分析沒有幫助26、在進(jìn)行數(shù)據(jù)探索性分析時(shí),我們需要對數(shù)據(jù)的分布、相關(guān)性等進(jìn)行初步了解。假設(shè)我們有一個(gè)包含多個(gè)變量的數(shù)據(jù)集。以下關(guān)于探索性分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.繪制直方圖可以觀察數(shù)據(jù)的分布形態(tài),判斷是否符合正態(tài)分布B.計(jì)算相關(guān)系數(shù)可以衡量變量之間的線性相關(guān)性C.探索性分析只是對數(shù)據(jù)的初步了解,對后續(xù)的分析沒有實(shí)質(zhì)性的幫助D.可以通過數(shù)據(jù)可視化和統(tǒng)計(jì)摘要來發(fā)現(xiàn)數(shù)據(jù)中的異常值和潛在模式27、對于一個(gè)不平衡的數(shù)據(jù)集,若要通過采樣方法來平衡數(shù)據(jù),以下哪種采樣策略可能會(huì)導(dǎo)致過擬合?()A.隨機(jī)過采樣B.隨機(jī)欠采樣C.SMOTE采樣D.以上都有可能28、在數(shù)據(jù)分析的社交網(wǎng)絡(luò)分析中,假設(shè)要研究一個(gè)社交平臺(tái)上用戶之間的關(guān)系和信息傳播。以下哪個(gè)指標(biāo)或概念對于理解網(wǎng)絡(luò)結(jié)構(gòu)和影響力可能是重要的?()A.度中心性,衡量節(jié)點(diǎn)的連接數(shù)量B.介數(shù)中心性,反映節(jié)點(diǎn)在路徑中的重要性C.接近中心性,體現(xiàn)節(jié)點(diǎn)與其他節(jié)點(diǎn)的接近程度D.不考慮網(wǎng)絡(luò)結(jié)構(gòu),只關(guān)注用戶發(fā)布的內(nèi)容29、在對一個(gè)城市的空氣質(zhì)量數(shù)據(jù)進(jìn)行分析,例如污染物濃度、氣象條件、季節(jié)因素等,以制定環(huán)境政策和改善空氣質(zhì)量。以下哪種分析方法可能有助于找出主要的污染源和影響因素?()A.方差分析B.因果分析C.判別分析D.以上都是30、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測未來一段時(shí)間的股票價(jià)格,以下哪種方法可能會(huì)受到數(shù)據(jù)季節(jié)性波動(dòng)的較大影響?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在廣告營銷領(lǐng)域,消費(fèi)者的廣告反饋數(shù)據(jù)和市場調(diào)研數(shù)據(jù)日益豐富。分析如何借助數(shù)據(jù)分析手段,如廣告效果評估、目標(biāo)受眾細(xì)分等,優(yōu)化廣告投放策略,提高營銷效果,同時(shí)探討在數(shù)據(jù)造假識(shí)別、消費(fèi)者行為變化快速和多渠道數(shù)據(jù)整合方面可能面臨的問題及應(yīng)對方法。2、(本題5分)教育領(lǐng)域逐漸重視數(shù)據(jù)分析在個(gè)性化學(xué)習(xí)和教學(xué)質(zhì)量提升方面的應(yīng)用。請論述如何利用學(xué)生的學(xué)習(xí)數(shù)據(jù)進(jìn)行學(xué)習(xí)行為分析、成績預(yù)測和個(gè)性化課程推薦,研究數(shù)據(jù)分析在教育領(lǐng)域的潛力和限制,以及如何保障數(shù)據(jù)的安全性和學(xué)生的隱私。3、(本題5分)在物流企業(yè)的客戶關(guān)系管理中,數(shù)據(jù)分析可以提升客戶滿意度和忠誠度。以某物流企業(yè)為例,討論如何運(yùn)用數(shù)據(jù)分析來了解客戶需求、解決客戶問題、提供增值服務(wù),以及如何通過客戶數(shù)據(jù)分析預(yù)測客戶流失并采取相應(yīng)措施。4、(本題5分)醫(yī)療健康領(lǐng)域的可穿戴設(shè)備產(chǎn)生了個(gè)人健康數(shù)據(jù),如何對這些數(shù)據(jù)進(jìn)行分析以提供個(gè)性化的健康建議和疾病預(yù)防?請論述數(shù)據(jù)分析在健康管理中的應(yīng)用、數(shù)據(jù)的可靠性驗(yàn)證以及與醫(yī)療機(jī)構(gòu)的整合問題。5、(本題5分)在房地產(chǎn)行業(yè),房屋交易數(shù)據(jù)、市場趨勢數(shù)據(jù)等不斷更新。探討如何利用數(shù)據(jù)分析方法,比如房價(jià)預(yù)測模型、投資回報(bào)率分析等,為購房者和投資者提供決策支持,同時(shí)研究在數(shù)據(jù)準(zhǔn)確性驗(yàn)證、政策影響因素和市場波動(dòng)不確定性方面所面臨的困難及解決途徑。三、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何處理跨領(lǐng)域數(shù)據(jù)的整合和分析?闡述數(shù)據(jù)標(biāo)準(zhǔn)化和領(lǐng)域適配的方法,并舉例說明。2、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何進(jìn)行數(shù)據(jù)的探索性分析(EDA)?解釋EDA的主要步驟和目的,以及常用的工具和技術(shù)。3、(本題5分)在進(jìn)行聚類分析時(shí),如何評估聚類結(jié)果的穩(wěn)定性?請介紹評估聚類穩(wěn)定性的方法和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論