版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
AIinaction
HowgenAIandagenticAI
redefinebusinessoperations
RESEARCHINSTITUTE
#GetTheFutuΓeYouWant
2
AIinaction
Tableof
contents
06
10
ExecutivesummaΓy
AsoΓganizations
realizeAIbenefits,ROIconceΓnswane
28
36
GenAIandagenticAIadoptionissoaΓing
AI-drivenprocess
transformationsare
deliveringvalueacrossbusinessoperations
CapgeminiResearchInstitute2025
3
AIinaction
CapgeminiResearchInstitute2025
Tableof
contents
54
78
Preparingyour
organizationfor
AI-poweredbusinessoperations
Conclusion
methodology
79
ReseaΓch
84OuΓseΓvices
4
CapgeminiResearchInstitute2025
AIinaction
Whoshouldreadthis
reportandwhy?
Thisreportisprimarilyintendedforseniorexecutivesin
businessoperations—particularlythoseleadingfunctionssuchassupplychain,procurement,finance,andcustomerorpeopleoperations.ItwillalsobevaluabletoCTOs,
CDOs,andothertechnologyandinnovationleadersexploringthestrategicroleofGenAIandagenticAIinenterprisetransformation.
Thisreportoffersunique,data-driveninsightsinto
howGenAIandagenticAIarebeingadoptedacross
industries,withafocusonROItrends,emergingusecases,andtheirtangibleimpactoncorebusinessfunctions.
Italsoexploresworkforceimplications,governancebestpractices,andscalingstrategies—makingita
criticalresourceforleaderslookingtomovebeyondexperimentationanddrivemeasurablevaluefromAIinvestmentsinbusinessoperations.
CapgeminiResearchInstitute2025
5
AIinaction
WhatisAI,GenAI,andagenticAIinbusiness
operations?
Inthisreport,“AI,GenAIandagenticAIinbusiness
operations”referstotheintegrationoftraditionalAI,AI-enhancedprocessautomation(IPA),generativeAI(GenAI),andagenticAIintoorganizational
workflowstoimproveefficiency,decision-making,andinnovation.
Keyterminologyusedinthereport:
?Artificialintelligence(AI)isacollectiveterm
fortheintelligentcapabilitiesinlearningsystems,typicallycategorizedintomachinevisionand
sensing,naturallanguageprocessing(NLP),
predictinganddecision-making,andactingandautomating.
?GenerativeAI(GenAI)isasubsetofAIthat
harnessesthepoweroftransformermodelsand
massivescalingofdataandcomputetoplan,reason,andcreategenerativefeaturesincludingtext,image,andvideo.
?AIagentisasoftwareprogramthatcaninteractwithitsenvironment,collectdata,andusethistoautonomouslyperform
taskstomeetpredeterminedgoals.
Asanevolutionfromtechnologieslikeroboticprocess
automation(RPA)andmachinelearning(ML),AIagents
can,perceive,reason,andactinchangingenvironmentstoachievetheirgoals.AIagentsemployarangeofadvancedtechnologiestointeractwithusersandperformtasks
autonomouslyandeffectively.Largelanguagemodels
(LLMs)areoftentheprimaryinterfacebetweenAIagentsandusers.Anagentcanunderstandandgeneratehuman-liketextorverbalresponsesusingnaturallanguage
processing(NLP),makinghuman-AIinteractionsmorenaturalandefficient.1
?AgenticAIisthedeploymentofAIagentsinareal-worldenvironmentwhereagentscandetectsignals,planand
reason,makeautonomousdecisions,andachievesetgoalswithouthumanintervention.(Notethatthedefinitionofthistermisnotyetstableacrosstheindustryandmayvarybetweendifferentprojectsandcontexts.)
Note:Inthisreport,theterm“AI”encompassestraditionalAI,AI-enhancedprocessautomation(IPA),GenAI,andagenticAIcollectively,unlessexplicitlystatedotherwise.
CapgeminiResearchInstitute2025
6
AIinaction
Havingshiftedfromexperimentalproofsofconcept(PoCs)toin-productionoperationalAIsystems,
Executive
summary
businessesarebeginningtorealizethebenefits.Oursurveyof1607organizationsshowsthat,returnsoninvestment(ROI)averaginganimpressive1.7xon
AIinvestmentsinbusinessoperations.aConfidence
inAI'scommercialviabilityisgrowing,with40%of
organizationsexpectingpositiveROIwithinonetothreeyearsandanother35%withinthreetofiveyearsbasedonoursurvey.AIagentsandmulti-agentsystemsdeliversignificantimprovementsinoperationalefficiency,costreduction,customersatisfaction,anderrorreduction.
InvestmentinintegratingAIintobusinessoperationsisrising,with62%oforganizationsincreasingtheirGenAIspendingthisyear,and36%allocatingcapitalspecificallytoGenAI.Threeoutoffourexecutivespreferusing
proprietarymodelsforAIimplementationinoperations,valuinghighperformanceandeasyintegrationwith
enterprisesystems.
In2025,GenAIdeploymentinbusinessoperations
surged,with36%oforganizationsdeployingthe
technologyatalimited/fullscale,upfrom20%in2024.Amongthese,30%haveintegratedAIagentsintotheiroperations.
aBusinessopeΓationsencompassthecoordinatedactivitiesandprocessesundertakenbyvariousdepartments
withinanorganizationtoproduce,market,anddelivergoodsorservices.Theseoperationsintegratefunctions
suchascustomerservice,productmanagement,marketing,andsupplychainmanagementtoensureefficiency,
profitability,andalignmentwiththeorganization’sstrategicobjectives.Inourresearch,wefocusonfouΓprimarybusinessfunctions:supplychainandprocurement,financeandaccounting,peopleoperations,andcustomeroperations,astheseareascollectivelyrepresentthecoreoperationalpillarsofmostmodernenterprises.
7
AIinaction
Insupplychainandprocurement,AIenhancesroute
optimizationandwarehousedesign,streamlining
fulfillmentandreducingoperationaloverhead.Inpeopleoperations,GenAIautomatestaskslikerésuméscreeningandcandidatematching,acceleratinghiringcyclesand
loweringrecruitmentcosts.Thesetransformationsare
drivingleaner,faster,andmorecost-effectiveoperationsacrosstheenterprise.Byembeddingatargetedsetof
AIcapabilitiesintocorebusinessprocesses–suchas
procurement,customerservice,supplychainoptimization,andfinancialoperations—organizationsareachieving
measurableefficiencies,leadingtocostreductionsrangingfrom26%to31%.
TheuseofAIagents,includingmulti-agentsystems,has
morethandoubled,with21%oforganizationsutilizing
themin2025(comparedwith10%in2024).Reported
Executive
adoptionratesmaybeoverstatedduetovarying
summary
definitionsofAIagentsversusGenAIassistants.While
surveysindicatestrongmomentum,clientandpartner
feedbacksuggestsactualAIagentadoptioncouldbemorelimited.Thesurvey’sbroadphrasingof“AIagentuse”mayincludeeverythingfrompilotstofull-scaledeployments.Comparedtocurrentlevels,agenticAIprojects(in
production)areexpectedtoriseby48%thisyear.
AIisreshapingbusinessprocessesandfunctionssuchassupplychainmanagement,finance,peopleoperations,andcustomeroperations,deliveringsignificant
efficienciesbyembeddingintelligenceintocoreworkflows.
8
AIinaction
?EmbraceagenticAIfortransformational
benefits:AdoptingagenticAIatscalethrough
phasedimplementationenablesoperational
transformation,betterdecision-making,andenhancedcustomerexperiences.
?Maintainastrictfocusoncostcontainment:
FinancialdisciplineinAIadoption—guidedbymetricslikecostperinferenceandROI—ensuresinnovationremainseconomicallysustainable.
?DeviseastrategyforscalingupAI-powered
processes:ScalingAIsuccessfullyrequiresaclear
build-versus-buystrategythatbalancesinnovationwithoperationalstabilityandlong-termadaptability.
TodevelopAI-drivenbusinessoperations,organizationsmustfollowsixessentialsteps:
Executive
?BuildafoundationofAIreadiness:EstablishingAIreadinessrequiresalignedleadership,strong
summary
governance,widespreadAIliteracy,digitalbusinessoperationsandrobustdatainfrastructuretoensurescalableandeffectiveAIinitiatives.
?MaketheworkforceAI-ready:SuccessfulAI
integrationdependsonchangemanagement,culturaltransformation,andempoweringemployeesto
collaborateeffectivelywithAI.
?Developastrongapproachtoprocessredesign:
AstrategicandstructuredprocessredesignembedsAIwhereitdeliversthemostvalue,drivingefficiencyandinnovation.
CapgeminiResearchInstitute2025
9
AIinaction
We'dalsolike
tothankthe
manyindustry
executiveswhosharedtheir
valuableinsightswithus.
AnnaKopp
DigitalLeadGermany,Microsoft–Germany
KishorePandrangi
GlobalDirectorofCustomerSuccess,Google–USA
DanielVassilev
Co-FounderandCo-CEO,RelevanceAI–USA
NicoleOnuta
LeadAIRiskManagement,ING–Netherlands
DeepakAnand
EnterpriseArchitectureLeader,UiPath–USA
Dr.WalterSun
SVP,GlobalHeadofAI,SAP–USA
EricPace
HeadofAI,Cox
Communications–USA
10
AIinaction
01
AsorganizationsrealizeAIbenefits,ROIconcernswane
CapgeminiResearchInstitute2025
11
Organizationsreportastrong1.7xROIfromAIinbusinessoperations
Inrecentyears,businessleadershaveraisedquestionsaboutwhetherthesubstantialexpenditureonAIandGenAIwillyieldcompensatoryAI-drivenbenefitsandreturns.2,3Butorganizationsthathaveconductedpilotprojects,achievedlimiteddeployment,orscaledtheseusecasesinvariousbusinessfunctionshavereportedaverageROIof1.7x.
AIinaction
Figure1.
OrganizationsachieveaverageROIof1.7xfromAIinvestmentsinbusinessoperations
AverageROIfromAIinvestment
575
1.7x
343
1.5x
2.1x
1.5x
1.7x
156
→140
116
91
→163108
69
75
Financeand
accounting
Totalacrossall
functions
People
Customer
operations
Supplychainand
procurement
operations
Totalamount
invested($million)
Operationscost
reduced($million)
Source:CapgeminiResearchInstitute,AI-poweredbusinessoperationssurvey,February–March2025,N=1,007executiveswhoarefrombusinessfunctionssuchassupplychainandprocurement,financeandaccounting,peopleoperationsandcustomeroperations.
CapgeminiResearchInstitute2025
CapgeminiResearchInstitute2025
12
AIinaction
O∩aveΓa9e,aΓou∩d40%ofexecutivesa∩ticipateachievi∩910-20%impΓoveme∩tsi∩keymetΓicssuchasi∩si9ht
accuΓacy,pΓoductivity,timetomaΓket(TTM),a∩dcustomeΓa∩demployeesatisfactio∩oveΓthe∩extthΓeeyeaΓs,
compaΓedwith32%whoexpeΓie∩cedthesamelevelof
be∩e?tsi∩thepastyeaΓ.A∩otheΓ20%ofexecutivesexpectmoΓetha∩20%impΓoveme∩tacΓosstheaboveme∩tio∩edpaΓameteΓsi∩∩extthΓeeyeaΓ.
Twoinfiveorganizations(40%)trackingROI
expecttoachieve
positiveROIinonetothreeyears
AΓou∩d40%ofoΓganizationstΓacki∩9ROl,expectto
achievepositiveROlfΓomAlwithi∩o∩etothΓeeyeaΓs,
ΓeHecti∩99Γowi∩9co∩?de∩cei∩thetech∩olo9y’s
commeΓcialapplicability.AnotheΓ35%a∩ticipateΓealizi∩9ROlwithi∩thΓeetofiveyeaΓs,hi9hli9hti∩9abΓoadeΓtΓe∩dofstΓate9ici∩vestme∩t.
Whiletimeli∩esvaΓybasedo∩factoΓssuchasi∩dustΓya∩d
usecasecomplexity,mostoΓ9a∩izatio∩saΓeco∩?de∩ti∩Al'spote∩tialtodΓivesi9∩i?ca∩tbusi∩essimpact.
These∩ioΓdiΓectoΓfoΓ9lobalpΓocuΓeme∩ta∩alytics,data
scie∩cea∩ddi9italataphaΓmaceuticaloΓ9a∩izatio∩says:"AIsignificantlyenhancescostsavingsandcostavoidance,whicharecrucialforsupplychainefficiency.TheROIforAI-drivencontractanalysisandvalueleakagepreventionsurpasses300%."
%
ofoΓ9a∩izatio∩stΓacki∩9ROl,expecttoachievepositiveROlfΓomAlwithi∩o∩etothΓeeyeaΓs
CapgeminiResearchInstitute2025
13
AIinaction
FiguΓe2.
Around40%oforganizationswhoaretrackingROIexpecttorealizeapositiveROIinonetothreeyears
AveragetimetoachievepositiveROIonAIinbusinessoperations
40%
24%24%
16%
13%
11%
2%
<1years1to2years2to3years3to4years4to5years>5years
Source:CapgeminiResearchInstitute,AI-poweredbusinessoperationssurvey,February–March2025,N=300executiveswhoarefrombusinessfunctionstrackingROIasafinancialKPItoevaluatethesuccessofAIandGenAIinitiatives.
14
Thisisconsistentwithrecentestimates.Around
half(49%)ofUSGenAIdecisionmakersexpecttheirorganizationstoachieveROIonAIinvestmentswithinonetothreeyears,while44%saythreetofiveyears.4
AgenticAIinbusinessprocesseswillboostthesebenefits
AIagentsarebeingadoptedacrossenterprises,mid-
marketfirms,andSMBs,buteachsegmentisfocusing
ondifferentpriorities.Enterprisesareleadingadoptioninoperationsandcompliance-heavyareas,with46%ofusecasescenteredonfunctionslikeprocurement,HR,
andfinance—wherescale,control,andriskmanagementarekey.Customerserviceandsalesarealsoemergingasimportantareas,reflectinggrowinginterestinAI-drivenengagement.5Improvedcustomersatisfactioncanbe
tracedtoAIagents’abilitytoprovidepersonalized,
round-the-clockservice,instantresponses,andseamlessmultichannelintegration.
Themagnitudeoferrorreduction(+40%)isstriking,
especiallygiventhecomplexityoftasksAIagentstypicallyhandle.ThisindicatesagrowingrelianceonAIsystemsforoperationswhereprecisionisessential.
CapgeminiResearchInstitute2025
AIinaction
“AIagentsareexpected
todriveefficiencies
andreduceoperational
costs,withconservative
estimatesindicatinga
minimumof10%efficiencygains,andoptimistic
projectionsreaching25%”
JojiPhilip
DirectorofAI/MLproducts,Ericsson
15
“Multi-agentsystemsallowtaskstobebrokeninto
specializedroles,improvingefficiencyandreducing
errors.Agentscanrevieweachother’sworktominimizehallucinations–atrulyfascinatingapproach.”
DanielVassilev
Co-FounderandCo-CEO,RelevanceAI
CapgeminiResearchInstitute2025
AIinaction
Figure3.
AIagent/multi-agentsystemsresultinimprovementsrangingfrom40–45%acrosskeyparameters
ImpactofAIagents/multi-agentsystemsonkeyparameters
Increaseinoperationale?ciency
Improvementincustomersatisfaction
Reductioninerrors
Decreaseinoperationalcosts
45%
44%
43%
40%
Source:CapgeminiResearchInstitute,AI-poweredbusinessoperationssurvey,February–March2025,N=125executiveswhoareinvolvedintechnology
implementation,andGenAIproductowners/AIdeliverymanagerswhoareutilizingAIagents/multi-agentsystems.
CapgeminiResearchInstitute2025
16
AIinaction
Initialresultsindicateuptoa40–45%improvementinkeyparametersfollowingthedeploymentofAIagentsand
multi-agentsystems.Whilethesefiguresareencouraging,theymustbecontextualizedwithinthecurrentscope
andmaturityofimplementation.Asignificantportionoftheobservedgainscanbeattributedtotheautomationofstraightforward,repetitivetasks—representingearly-stageefficienciesratherthanlong-termtransformationalimpact.Furthermore,theunderlyingdatamaybesubjecttobias,asitisderivedfromalimitednumberofearly
adopters,manyofwhomoperateinenvironmentsthatarealreadyconducivetoAIintegration.Thesamplesizeremainssmall,andlarge-scaledeploymentsarestill
relativelyrare,whichlimitsthegeneralizabilityofthesefindings.Assuch,whiletheinitialoutcomesarepositive,furthervalidationthroughbroaderandmorediverse
implementationsisnecessarytoestablishconsistentandscalableimpact.
AFinTechorganizationimplementedanerrorpatterndetectionagentthatidentifieda23%spikeinpayment-processingerrors.Theagentnotonlyflaggedtheissuebutalsohighlightedspecificproblematiccodeblocks,reducingdebuggingtimefrom12hourstoundertwohoursperincident,cuttingoverallerrorratesby47%inthreemonths.6
YUMBrands,theparentcompanyofTacoBelland
operatorof60,000restaurantsworldwide,hasintroducedanAI-poweredrestaurantmanagerthatcantrackcrew
attendanceandplanshiftpatterns,aswellassuggest
adjustedopeninghourstoalignwithmarketconditions,andevenattendthedrive-throughwindow.Whilenotyetmarket-ready,YUMBrands,theworld'slargestfranchiseoperator,evidentlyisanillustrationofagenticAIpotentialintheindustry.7
17
AIimpactboostsinvestment
Asignificantmajorityoforganizationssurveyed,around62%,haveincreasedtheirinvestmentinGenAI,year
onyear.Amongthese,36%haveallocatedadditional
investmentcapitaltoGenAI.Thisshiftalsoreflectsa
strategicreallocationoffunds,with33%oforganizationsdivertingbudgetfromotherareas.
EvenamongorganizationswhoseleadershiparenotstrongadvocatesofGenAI,60%haveincreasedtheirinvestments.
GenAIisincreasinglyseenasastrategicinvestmenttofuture-prooforganizationsagainsttechnologicalandmarketdisruptions.
%
oforganizationswithlimitedleadershipsupporthavestillincreasedtheirGenAIinvestments
CapgeminiResearchInstitute2025
AIinaction
Figure4.
Around62%oforganizationssurveyedhaveincreasedinvestmentinGenAI
Year-on-yearchangeinbusinessinvestmentinGenAI,2025
62%
36%Additionalbudget
36%
32%
Reallocationofotherbudgets
32%
1%
Mixofboth
0%
IncreasedRemained
thesame
DecreasedUnsure/don'tknow
Source:CapgeminiResearchInstitute,AI-poweredbusinessoperationssurvey,February–March2025,N=1,607executives.
CapgeminiResearchInstitute2025
18
AIinaction
Acrossvariousindustriessurveyed,thefivesectors
showingthehighestyear-on-yearriseininvestment
inGenAIareconsumerproducts(73%ofexecutives),insurance(70%),banking(67%),aerospaceanddefense(65%),andtelecom(64%).
%
ofconsumerproductsorganizationshave
increasedtheirGenAIinvestmentscomparedwithlastyear
FiguΓe5.
Nearlythree-quartersofconsumerproductsorganizationshaveincreasedtheirGenAIinvestmentscomparedtolastyear
PercentageoforganizationsinindustriessurveyedwhoincreasedtheirGenAIinvestmentscomparedtolastyear
73%
70%67%66%
ConsumerproductsInsuranceBanking
Industrialmanufacturing
65%64%
63%62%
Aerospaceanddefense TelecomAutomotiveAverage
59%
59%
EnergyandutilitiesHightech
57%
56%
55%
PharmaandhealthcareRetail
42%
Government/publicsectorMediaandentertainment
Source:CapgeminiResearchInstitute,AI-poweredbusinessoperationssurvey,February–March2025,N=1,607executives.
CapgeminiResearchInstitute2025
19
%
organizationsthatincreasedtheirGenAI
investmentsinsupplychainandprocurementafterachievingsignificantcostsavings
AIinaction
FiguΓe6.
Amongorganizationsthathaveachievedsignificantcostsavingsintheirbusinessoperations,63%haveincreasedGenAIinvestments
Question1:Whatpercentageoftotaloperationscostwasreducedduetothefollowingusecases:
pilot,partiallyimplemented,fullyimplemented?
Question2:HowhasyourinvestmentlevelinGenAIchangedthisyearcomparedtolastyear?
Average
Supplychainandprocurement
Peopleoperations
Customeroperations
Financeandaccounting
63%
75%
67%
60%
50%
%organizationsexperiencingorexpecting>20%operatingcostreductionandwhoareincreasinginvestments.
Source:CapgeminiResearchInstitute,AI-poweredbusinessoperationssurvey,February–March2025,N=545executiveswhoarefrombusinessfunctionsandhaveexperienced20%ormorecostreduction.
CapgeminiResearchInstitute2025
20
Amongorganizationsthathaverealized/expectmorethan20%operatingcostreductionintheirbusinessfunctions,mostincreasedtheirGenAIinvestmentsfrom2024.
Mostinvestments
willbeinproprietarymodels
Despitetheincreasingperformanceandcostadvantagesofopen-sourceAImodels,asignificantmajorityof
executivescontinuetofavorproprietarysolutionsforAIimplementation.Accordingtooursurveydata,threeoutoffourexecutivespreferproprietarymodels,with43%optingforthosedevelopedbyhyperscalersandanotherthirdchoosingmodelsfromspecializednicheproviders.ThispreferenceisparticularlystrongamongorganizationsthathavescaleduptheirinvestmentsinAIandgenerativeAI,indicatingacleartrendtowardtrusted,enterprise-
gradesolutionsthatofferrobustsupport,security,andintegrationcapabilities.
AIinaction
Figure7.
ThreeinfourexecutivessurveyedpreferproprietarymodelsforAIimplementation
PercentageofexecutiveswhoprefervariousAImodels
Proprietarymodelsfromnichemodeldevelopers
Proprietarymodelsfromhyperscalers
Open-sourcemodels
Combinationofproprietaryandopen-sourcemodels
6%
17%
34%
77%
43%
Source:CapgeminiResearchInstitute,AI-poweredbusinessoperationssurvey,February–March2025,N=1,607executives.
CapgeminiResearchInstitute2025
21
Lookingahead,theadoptionofindustry-specificAIis
expectedtoaccelerate.By2027,morethan50%ofGenAImodelsdeployedbyorganizationswillbetailoredtospecificindustriesorbusinessfunctions—upfromjust1%in2023.Thisshiftunderscoresthegrowingdemandfordomain-specificintelligenceandperformance,areaswhereproprietarymodelsareoftenbetterpositionedtodelivervalue.8
Notably,organizationsthathaveincreasedinvestmentinAIandGenAIshowastrongerpreferencefor
proprietarymodels.
Overthepastyear,AIsystemshavecontinuedto
improve,exceedinghumanperformanceonseveral
benchmarks.9AccordingtoStanford’sAIIndexReport2024,theskillsgapbetweenthetopand10th-rankedAImodelsontheChatbotArenaLeaderboardwas11.9%.Byearly2025,thisgaphadnarrowedto5.4%.Similarly,thedifferencebetweenthetoptwomodelsshrank
from4.9%in2023tojust0.7%in2024.10
AIinaction
FiguΓe8.
Topfactorsdrivingpreferenceforproprietarymodels
Question:Whatfactorsmakeyouselectproprietarymodels(e.g.,MicrosoftCopilot,OpenAIGPT-4,GoogleGemini,AnthropicClaude,etc.)?
75%72%
66%
65%
Advancedsecurityfeaturesandcompliancewith
Accesstodedicated
supportandregular
updates
HighperformanceEasyintegrationwith
enterprisesystems
industrystandards
Source:CapgeminiResearchInstitute,AI-poweredbusinessoperationssurvey,February–March2025,N=1339executiveswhopreferproprietarymodelsoracombinationofproprietaryandopen-sourcemodelsforAIimplementation.
CapgeminiResearchInstitute2025
22
Twoadditionalfactorsaffectingdecisionsonmodelselection–beyondcapabilitiesandoutputreliability–aredecreasinginferencecostsandtheavailabilityofmodeloptimizationtechniques.
Inferencecosts,ortheexpenseofqueryinga
trainedmodel,arefallingdramatically(seeFigure9).Thischart,onalogarithmicscale,illustratesthetrendinAIperformanceperdollar.GPT3.5experiencedadecreasefrom$20permilliontokensto$0.07per
milliontokens,whileGPT-4hadareductionfrom$15to$0.12inayear.,,
Modeloptimizationtechniquessuchasmodel
pruning,quantization,anddistillationhelpreducethesizeandcomplexityofAImodelswithoutsignificantlycompromisingperformance.Theseoptimizedmodelsrequirefewercomputationalresources,thereby
loweringinferencecosts.Inaddition,efficient
hardwareutilization,batchprocessingofinferencerequests,dynamicscalingtoadjustthenumberof
computingresourcesbasedoncurrentdemand,andenergy-efficientalgorithmscansignificantlyreducethepowerconsumptionofAImodels.
AIinaction
Figure9.
AIinferencecostshaverapidlydeclined
Inferencepriceacrossselectbenchmark,2022-24
Inferenceprice(inUSDpermilliontokens-logscale)
10
1
0.1
oGPT-3.5level+inmultitask
languageunderstanding(MMLU)
GPT-4level+incodegeneration(HumanEval)
oGPT-4olevel+inPhD-levelsciencequestions(GPQADiamond)
GPT-4olevel+inLMSYSChatbotArenaElo
Sep-2022Jan-2023May-2023Sep-2023Jan-2024May-2024Sep-2024Publicationdate
Source:EpochAI,“ArtificialAnalysis,2025”.
CapgeminiResearchInstitute2025
23
AIinaction
Byachievingan11xreductionincomputecosts
withoutcompromisingperformance,open-source
modelssuchasDeepSeekaddressasignificant
bottleneckinAIdevelopment:accesstoadvanced
hardwareresources.Morebusinesses,research
institutions,andsmallerstartupscannowdeploy
high-qualityAImodelstailoredtotheirneeds.12
However,enterpriseadoptionofopen-sourcemodelsstillinvolvescertaintrade-offsduetothevarying
levelsofrisksandimplicationsforbusinessand
technology(seeFigure10).Theseincludetheneed
“TheadoptionofAIusecases,acceleratedbyadvancementsin
open-sourcetechnologies,availabilityofcloudAIservicesand
infrastructure,andincreasedaccessibilityinenterprisesystems,
empowersorganizationstoinnovaterapidlyandachievemeasurable
businessoutcomes.Adoptionisnolongeroptionalorsize-dependent–
it’sfundamentaltocompetitiveadvantageandoperationalproductivity."
forgreatertechnicalexpertise,potentialexposuretosecurityvulnerabilities,andrelianceoncommunity-drivensupport,whichmayaffectupdatecyclesanddocumentationquality.Whilethesechallengesare
notuniversalandarebeingactivelyaddressedby
theopen-sourcecommunity,theyremainimportantconsiderationsfororganizationsevaluatingAI
deploymentstrategies.
Despitetheseadvancements,fewerthanoneinfiveexecutivescurrentlypreferopen-sourceplatforms.
MarekSowa
HeadofGenerativeTechnologiesCenterofExcellence,Capgemini'sBusinessServices
Concernsaroundsecurity,technicalcomplexity,andtheneedforongoingcustomizationandmaintenancecontinuetodriveorganizationstowardproprietary
models.Asperformanceconvergesandcostsdecline,proprietarysolutionsremainthestrategicchoiceforenterprisesseekingscalable,secure,andspecializedAIcapabilities.
CapgeminiResearchInstitute2025
24
AIinaction
11x
claimedreductioninAIcomputecostsforopen-sourcemodelssuchasDeepSeek,without
compromisingperformance
AsFigure10shows,thechoicebetweenopen-sourceandproprietaryAImodelsisincreasinglyshapedby
aspectrumofmodelopenness,eachwithvarying
degreesoftransparency,control,andrisk.While
fullyopenmodelsofferunmatchedflexibilityand
auditability,theyalsointroduceconcernsaround
dataleakageandcompetitiveexposure.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年欽州幼兒師范高等??茖W(xué)校單招職業(yè)適應(yīng)性測試題庫帶答案詳解
- 2026年新疆師范高等??茖W(xué)校單招職業(yè)傾向性測試題庫及答案詳解1套
- 2026年長沙幼兒師范高等??茖W(xué)校單招職業(yè)傾向性測試題庫及完整答案詳解1套
- 安全產(chǎn)品面試題及答案
- 廣職院護(hù)理面試題及答案
- 家庭雇傭保姆照顧老人協(xié)議書范本
- 蘇州衛(wèi)生職業(yè)技術(shù)學(xué)院2026年公開招聘36人備考題庫及參考答案詳解一套
- 2025年新疆雙河市政服務(wù)有限責(zé)任公司面向社會招聘工作人員的備考題庫有答案詳解
- 2025年成都市金沙幼兒園教育集團(tuán)(教辦園)招聘儲備教師備考題庫參考答案詳解
- 2025年黃山市徽州區(qū)消防救援大隊(duì)政府專職消防員招聘14人備考題庫參考答案詳解
- 離婚財(cái)產(chǎn)分割培訓(xùn)課件
- 口腔科種植牙預(yù)防感染要點(diǎn)培訓(xùn)指南
- 小學(xué)語文板書基本功培訓(xùn)
- 2025甘肅酒泉市公安局招聘留置看護(hù)崗位警務(wù)輔助人員30人(第三批)考試筆試參考題庫附答案解析
- 測繪安全生產(chǎn)作業(yè)規(guī)范
- 2026年焦作大學(xué)單招職業(yè)適應(yīng)性考試必刷測試卷必考題
- 安全生產(chǎn)先進(jìn)評選方案
- 國開《廣告調(diào)查與預(yù)測》形考作業(yè)1-4答案
- 鈑金折彎工藝培訓(xùn)課件
- 別墅物業(yè)費(fèi)代繳合同協(xié)議2025年規(guī)定
- 2025年中級會計(jì)財(cái)務(wù)管理真題及答案
評論
0/150
提交評論