華北電力大學(xué)《Oacle數(shù)據(jù)庫》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
華北電力大學(xué)《Oacle數(shù)據(jù)庫》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
華北電力大學(xué)《Oacle數(shù)據(jù)庫》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
華北電力大學(xué)《Oacle數(shù)據(jù)庫》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
華北電力大學(xué)《Oacle數(shù)據(jù)庫》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁華北電力大學(xué)

《Oacle數(shù)據(jù)庫》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),例如分析超市購物籃中的商品組合。假設(shè)發(fā)現(xiàn)購買面包的顧客往往也會(huì)購買牛奶,這種關(guān)聯(lián)規(guī)則具有較高的支持度和置信度。這對超市的營銷策略可能有什么啟示?()A.可以將面包和牛奶放在相鄰的貨架上,方便顧客購買B.降低面包或牛奶的價(jià)格,以促進(jìn)銷售C.減少面包或牛奶的庫存,避免積壓D.這種關(guān)聯(lián)對營銷策略沒有實(shí)際意義2、對于一個(gè)包含分類變量和數(shù)值變量的數(shù)據(jù)集,若要進(jìn)行關(guān)聯(lián)規(guī)則挖掘,以下哪種方法較為合適?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上都是3、對于一個(gè)包含大量重復(fù)數(shù)據(jù)的數(shù)據(jù)表,以下哪種操作可以有效地減少數(shù)據(jù)存儲(chǔ)空間?()A.建立索引B.數(shù)據(jù)壓縮C.數(shù)據(jù)分區(qū)D.數(shù)據(jù)清理4、回歸分析是數(shù)據(jù)分析中的常用方法。假設(shè)要研究廣告投入與銷售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡單線性回歸足以捕捉廣告投入和銷售額之間的復(fù)雜非線性關(guān)系B.多元線性回歸中,自變量越多,模型的解釋能力就越強(qiáng)C.在建立回歸模型前,不需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理D.回歸模型的擬合優(yōu)度(R2)越高,說明模型對數(shù)據(jù)的擬合效果越好5、在探索性數(shù)據(jù)分析(EDA)中,以下關(guān)于數(shù)據(jù)探索方法的描述,正確的是:()A.只查看數(shù)據(jù)的統(tǒng)計(jì)摘要,就能全面了解數(shù)據(jù)的特征B.繪制箱線圖可以直觀展示數(shù)據(jù)的分布和異常值情況C.相關(guān)性分析對于所有類型的數(shù)據(jù)都能得出明確的結(jié)論D.EDA只是初步步驟,對后續(xù)的深入分析沒有幫助6、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的算法和模型需要考慮數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,其中一個(gè)類別占比極少,以下哪種方法可以處理這種不平衡問題?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是7、假設(shè)我們要分析某地區(qū)不同年齡段人口的收入水平,以下哪種數(shù)據(jù)分析方法可以直觀地展示收入隨年齡的變化趨勢?()A.分組柱狀圖B.折線圖C.箱線圖D.直方圖8、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是9、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機(jī)器學(xué)習(xí)算法進(jìn)行數(shù)據(jù)的分類、聚類和預(yù)測C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識(shí),對于普通用戶來說難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無誤的,可以直接用于決策10、在數(shù)據(jù)分析的過程中,需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,例如將不同單位和量級的數(shù)據(jù)轉(zhuǎn)換為統(tǒng)一的尺度。以下哪種情況可能更需要進(jìn)行數(shù)據(jù)標(biāo)準(zhǔn)化?()A.數(shù)據(jù)的分布比較均勻B.數(shù)據(jù)的量級差異較大C.數(shù)據(jù)的類型比較單一D.以上都不是11、在數(shù)據(jù)庫中,若要提高數(shù)據(jù)的寫入性能,以下哪種存儲(chǔ)引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive12、數(shù)據(jù)挖掘技術(shù)在發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系方面發(fā)揮著重要作用。假設(shè)我們要從電商網(wǎng)站的用戶購買記錄中挖掘用戶的購買行為模式。以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同商品之間的關(guān)聯(lián)關(guān)系,幫助進(jìn)行商品推薦B.分類算法能夠根據(jù)已知的類別標(biāo)簽對新的數(shù)據(jù)進(jìn)行分類預(yù)測C.聚類分析將數(shù)據(jù)分為不同的組,但這些組必須事先定義好D.數(shù)據(jù)挖掘需要大量的數(shù)據(jù)和計(jì)算資源,同時(shí)結(jié)果需要進(jìn)一步的分析和驗(yàn)證13、在進(jìn)行地理數(shù)據(jù)分析時(shí),以下關(guān)于地理數(shù)據(jù)分析方法的描述,正確的是:()A.簡單的地圖繪制就能充分展示地理數(shù)據(jù)的特征B.空間聚類分析對于發(fā)現(xiàn)地理數(shù)據(jù)中的聚集模式?jīng)]有幫助C.地理加權(quán)回歸可以考慮空間異質(zhì)性對變量關(guān)系的影響D.不需要考慮地理坐標(biāo)系和投影的選擇,對分析結(jié)果影響不大14、數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同項(xiàng)之間的關(guān)聯(lián)關(guān)系。假設(shè)我們在分析超市的銷售數(shù)據(jù),想要找出經(jīng)常一起被購買的商品組合,以下哪個(gè)關(guān)聯(lián)規(guī)則度量指標(biāo)可以用來評估規(guī)則的強(qiáng)度?()A.支持度B.置信度C.提升度D.以上都是15、數(shù)據(jù)分析師在處理數(shù)據(jù)時(shí),需要考慮數(shù)據(jù)的來源和可靠性。假設(shè)我們從多個(gè)渠道收集了關(guān)于市場趨勢的數(shù)據(jù)。以下關(guān)于數(shù)據(jù)來源的描述,哪一項(xiàng)是錯(cuò)誤的?()A.官方統(tǒng)計(jì)數(shù)據(jù)通常具有較高的權(quán)威性和可靠性B.網(wǎng)絡(luò)爬蟲獲取的數(shù)據(jù)可能存在偏差和錯(cuò)誤,需要謹(jǐn)慎使用C.內(nèi)部數(shù)據(jù)庫中的數(shù)據(jù)一定是準(zhǔn)確和完整的,無需進(jìn)行驗(yàn)證D.不同來源的數(shù)據(jù)可能存在格式和定義上的差異,需要進(jìn)行統(tǒng)一和整合16、假設(shè)要分析某網(wǎng)站不同頁面的訪問量分布情況,以下哪種圖表能夠直觀地展示訪問量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是17、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢C.避免數(shù)據(jù)的過擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性18、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),可能會(huì)遇到數(shù)據(jù)不一致的問題。假設(shè)你要將銷售數(shù)據(jù)和客戶數(shù)據(jù)進(jìn)行關(guān)聯(lián),以下關(guān)于處理數(shù)據(jù)不一致的方法,哪一項(xiàng)是最恰當(dāng)?shù)模浚ǎ〢.忽略不一致的數(shù)據(jù),只關(guān)聯(lián)一致的部分B.手動(dòng)修正不一致的數(shù)據(jù),確保關(guān)聯(lián)的準(zhǔn)確性C.使用數(shù)據(jù)轉(zhuǎn)換和映射規(guī)則,將不一致的數(shù)據(jù)統(tǒng)一D.不進(jìn)行關(guān)聯(lián),直接分別分析兩組數(shù)據(jù)19、在數(shù)據(jù)分析的探索性數(shù)據(jù)分析(EDA)中,以下不屬于常用方法的是()A.繪制箱線圖B.進(jìn)行假設(shè)檢驗(yàn)C.計(jì)算數(shù)據(jù)的描述性統(tǒng)計(jì)量D.觀察數(shù)據(jù)的分布20、數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用越來越廣泛。以下關(guān)于數(shù)據(jù)分析在金融風(fēng)險(xiǎn)管理中的作用,不準(zhǔn)確的是()A.可以通過分析歷史數(shù)據(jù)來評估信用風(fēng)險(xiǎn),預(yù)測違約概率B.利用市場數(shù)據(jù)進(jìn)行風(fēng)險(xiǎn)模型的構(gòu)建和壓力測試,防范系統(tǒng)性風(fēng)險(xiǎn)C.數(shù)據(jù)分析能夠?qū)崟r(shí)監(jiān)測交易活動(dòng),發(fā)現(xiàn)異常和欺詐行為D.數(shù)據(jù)分析在金融風(fēng)險(xiǎn)管理中雖然有一定作用,但傳統(tǒng)的風(fēng)險(xiǎn)管理方法仍然是主要的手段,數(shù)據(jù)分析可以忽略21、在數(shù)據(jù)庫中,若要對數(shù)據(jù)進(jìn)行分組統(tǒng)計(jì),以下哪個(gè)關(guān)鍵字通常會(huì)被使用?()A.GROUPBYB.ORDERBYC.WHERED.HAVING22、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架如Hadoop被廣泛應(yīng)用。假設(shè)要對數(shù)十億行的日志數(shù)據(jù)進(jìn)行分析,以下哪個(gè)Hadoop組件可能主要負(fù)責(zé)數(shù)據(jù)的存儲(chǔ)?()A.HDFSB.MapReduceC.YARND.Hive23、數(shù)據(jù)分析中的特征工程用于創(chuàng)建和選擇對模型有用的特征。假設(shè)我們要對一組圖像數(shù)據(jù)進(jìn)行分析。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過提取圖像的顏色、形狀、紋理等特征來表示圖像B.特征選擇可以去除冗余和無關(guān)的特征,提高模型的效率和性能C.特征工程只適用于結(jié)構(gòu)化數(shù)據(jù),對圖像、音頻等非結(jié)構(gòu)化數(shù)據(jù)不適用D.可以使用特征縮放、編碼等方法對特征進(jìn)行預(yù)處理24、數(shù)據(jù)倉庫是數(shù)據(jù)分析的重要基礎(chǔ)設(shè)施。假設(shè)一個(gè)企業(yè)要構(gòu)建數(shù)據(jù)倉庫來整合來自不同業(yè)務(wù)系統(tǒng)的數(shù)據(jù),以下哪個(gè)步驟是首先要進(jìn)行的?()A.確定數(shù)據(jù)倉庫的架構(gòu)B.進(jìn)行數(shù)據(jù)清洗和轉(zhuǎn)換C.定義數(shù)據(jù)模型D.選擇合適的數(shù)據(jù)庫管理系統(tǒng)25、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)我們要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的考試成績,以下哪種假設(shè)檢驗(yàn)方法可能適用?()A.t檢驗(yàn)B.方差分析C.卡方檢驗(yàn)D.以上都有可能,取決于數(shù)據(jù)特點(diǎn)26、數(shù)據(jù)分析中的探索性數(shù)據(jù)分析(EDA)有助于理解數(shù)據(jù)的特征和分布。假設(shè)我們正在分析一個(gè)關(guān)于股票市場的數(shù)據(jù)集,包括股票價(jià)格、成交量等變量。在進(jìn)行EDA時(shí),以下哪種可視化方法可能最有助于發(fā)現(xiàn)價(jià)格和成交量之間的潛在關(guān)系?()A.柱狀圖B.折線圖C.散點(diǎn)圖D.箱線圖27、數(shù)據(jù)分析中,回歸分析用于建立變量之間的關(guān)系模型。以下關(guān)于回歸分析的說法中,錯(cuò)誤的是?()A.線性回歸是回歸分析中最常見的類型,用于建立因變量與一個(gè)或多個(gè)自變量之間的線性關(guān)系B.回歸分析可以用來預(yù)測因變量的值,根據(jù)自變量的變化情況進(jìn)行推斷C.回歸分析的結(jié)果只適用于特定的數(shù)據(jù)集,不能推廣到其他情況D.在進(jìn)行回歸分析時(shí),需要對模型進(jìn)行評估和驗(yàn)證,確保其準(zhǔn)確性和可靠性28、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的選擇很重要。以下關(guān)于數(shù)據(jù)挖掘算法選擇的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘算法的選擇應(yīng)根據(jù)數(shù)據(jù)的特點(diǎn)、分析目的和計(jì)算資源等因素來確定B.不同的數(shù)據(jù)挖掘算法適用于不同類型的數(shù)據(jù)和問題,沒有一種算法是萬能的C.選擇數(shù)據(jù)挖掘算法時(shí),可以參考其他類似項(xiàng)目的經(jīng)驗(yàn),但不能完全照搬D.數(shù)據(jù)挖掘算法的選擇只需要考慮算法的準(zhǔn)確性,其他因素如計(jì)算效率等可以忽略不計(jì)29、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和關(guān)聯(lián)規(guī)則,以下哪種算法是常用的?()A.Apriori算法B.KNN算法C.SVM算法D.隨機(jī)森林算法30、對于一個(gè)存在異常值的數(shù)據(jù)集合,以下哪種描述性統(tǒng)計(jì)量對異常值較為敏感?()A.中位數(shù)B.眾數(shù)C.均值D.四分位數(shù)二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在制造業(yè)的供應(yīng)鏈協(xié)同中,如何利用數(shù)據(jù)分析促進(jìn)供應(yīng)商、制造商和客戶之間的信息共享和協(xié)同決策,提高供應(yīng)鏈的整體效率。2、(本題5分)在工業(yè)互聯(lián)網(wǎng)領(lǐng)域,設(shè)備聯(lián)網(wǎng)產(chǎn)生的大量數(shù)據(jù)可以用于設(shè)備監(jiān)控、故障診斷和生產(chǎn)優(yōu)化。闡述如何運(yùn)用數(shù)據(jù)分析實(shí)現(xiàn)工業(yè)互聯(lián)網(wǎng)的智能化應(yīng)用,以及如何解決數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)接口不一致的問題。3、(本題5分)在電信客戶服務(wù)中,如何運(yùn)用數(shù)據(jù)分析來識(shí)別客戶問題、提升服務(wù)效率和滿意度?請?jiān)敿?xì)分析客戶數(shù)據(jù)的特點(diǎn)和處理方法,以及如何通過數(shù)據(jù)分析改進(jìn)服務(wù)流程和策略。4、(本題5分)在物流配送中心的選址問題中,如何利用數(shù)據(jù)分析綜合考慮交通、成本、需求等因素,選擇最優(yōu)的配送中心位置。5、(本題5分)在物流行業(yè)的綠色物流發(fā)展中,如何利用數(shù)據(jù)分析評估物流活動(dòng)的環(huán)境影響,制定節(jié)能減排策略,實(shí)現(xiàn)可持續(xù)物流。三、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡述數(shù)據(jù)分析師如何適應(yīng)不斷變化的數(shù)據(jù)分析技術(shù)和業(yè)務(wù)需求,包括學(xué)習(xí)新技能、更新知識(shí)體系等。2、(本題5分)解釋什么是模型壓縮技術(shù),說明其在減少模型計(jì)算量和存儲(chǔ)需求方面的應(yīng)用和方法,并舉例分析。3、(本題5分)解釋什么是數(shù)據(jù)偏斜,說明其在數(shù)據(jù)分析中的影響,并列舉至少兩種解決數(shù)據(jù)偏斜問題的方法和適用場景。4、(本題5分)簡述數(shù)據(jù)分析師在面對復(fù)雜業(yè)務(wù)問題時(shí),如何

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論