版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Abstract
Edgecomputing,asakeytechnologyofthenextgenerationofradioaccess
networks(RAN),hasdriventhedecentralizationofnetworksandcomputingfacilities.
Edgeserversclosertouserterminalscansignificantlyreduceservicelatencyandcope
withemergingnewscenarios.Simultaneously,therapiddevelopmentofartificial
intelligence(AI)playsasignificantroleinenhancingtheperformanceofedge
computing,aidingedgedevicesincopingwiththerapidlyincreasingdataontheedge.
Therefore,combiningthelocalcomputingcapabilityofedgedatawiththestrong
computingcapabilitiesofAI,knownasedgeintelligence,canenhancethedata
processingcapabilitiesontheedge,improvetheoverallperformanceofwireless
communicationsystems,andenhanceuserserviceexperiences.Edgeintelligenceisa
hotandrapidlydevelopingfieldinrecentyears,andthiswhitepaperaimstoanalyze
thecurrentresearchprogressinedgeintelligence.Itmainlyincludes:
(1)6GEdgeIntelligenceNetworksandInfrastructure:Firstly,theedge-native
intelligentarchitecturefor6Gnetworksisanalyzed.Then,theedgeintelligence
computinginfrastructureisintroduced,includingedgeintelligenthardwareandcloud
platforms.Finally,theedgeintelligencenetworkinfrastructureisdescribed,including
theedgeintelligenceaccessnetworkandcorenetwork.
(2)KeyTechnologiesofEdge-NativeIntelligence:Itisintroducedfromthe
aspectsofmodellightweight,edge-cloudcollaborativeintelligence,edgeintelligent
deployment,anddeepedgenodes.Edgeintelligenceinwirelessfederatedlearningis
alsoexplainedindetail,includingmodelsparsificationandmodelquantizationin
federatedlearning.
(3)ApplicationsofEdge-NativeIntelligence:Typicalapplicationsofedge-native
intelligenceareanalyzed,suchassmarttransportation,smartmanufacturing,and
smartenergysaving.
1/123
1.Introduction
1.1Background
From1Gto5G,communicationtechnologyhasundergonemultipleupgrades
andtransformations,significantlyimprovingdatatransferrates,reducinglatency,and
expandingnetworkcoverage.However,withtherapiddevelopmentoftechnologies
suchastheInternetofThings(IoT)andAI,theInternetofEverythingand
increasinglycomplexapplicationscenariosposechallengesthatexistingnetwork
architecturescannotmeet.Therefore,asthenextgenerationofcommunication
technology,6Gmustpossesshigherperformanceandmorepowerfulintelligent
capabilities,drivingthetransitionofedge-sidenetworksfrom"Internetof
Everything"to"IntelligenceofEverything."Tobetteradapttofuturediverseand
complexuserrequestsandapplicationscenarios,theconceptofedge-native
intelligencecameintobeingbyintegratingintelligenttechnologyintothedesignand
implementationofcommunicationsystems.[1]
Inrecentyears,thetheoryandtechnologyofAIhaveprogressedandfound
widespreadapplicationinindustrialscenarios.However,mostAIservicesare
typicallydeployedoncloudservers.Withtheadventofthe"InternetofEverything"
era,thenumberofterminaldevicesandtheamountofdatageneratedareincreasing
rapidly.Thecentralizeddataprocessingmethod,whichuploadsalldatatothecloud,
cannotmeetthelow-latencyrequirementsofusers.Consequently,edgecomputing
emergedwiththedevelopmentoftheInternetofThings(IoT)andAI.However,
currentresearchonedgecomputingimplementationfailstomeetthedemandsof
complexservicescenarios.Therefore,edge-nativeintelligencehasthepotentialto
becomethenextresearchhotspotinedgecomputing.[2]
Edge-nativeintelligenceenablesself-dynamicsensingandself-optimization
capabilitiesbetweenvariousunitsinthenativenetwork.Itbreaksawayfromthe
traditionalplug-inAIarchitecturebydeeplyintegratingAIintovariouslayersofthe
3/123
networktoenhancetheoverallsystemnetworkefficiency.Itachievesanautonomous
sensingoftheoveralllifecycleandself-managementwithinthenetwork
architecture.[3]
1.2OverviewofEdgeComputingandEdge-Native
Intelligence
Edgecomputing:Theconceptofedgecomputingisintroducedtoalleviatethe
processingpressureonclouddatacenters.Itisatechnologythatmigratescomputing
processesfromcentralserverstotheedgeofdevices.Thecoreideaistointegrate
network,computing,storage,andapplicationservicesintoaplatformclosetothedata
source,enablingservicestobeprovidednearby.Thistechnologyhelpsreducethe
processingloadofcloudcomputingandaddressestheissueofdatatransferlatency,
meetinguserneedsinreal-timeservice,intelligentapplications,security,andprivacy
protection.
Edge-nativeintelligence:Edgeintelligenceisthenextstageofdevelopmentafterthe
evolutionofedgecomputing.Withtherapiddevelopmentanditerationofedge
computingandAItechnologies,theconceptofedgeintelligencecameintobeing.It
executesAIalgorithmsattheedge,whichisamorecomplexdataanalysistask.
DeployingAIapplicationsonedgenodes,especiallyonmobiledevicesandIoT
devices,requiresthesupportofedgecomputing.Firstly,edgenodesneedtoprovide
correspondinghardwareandprogramminglibrariestomeetthebasicoperationsofAI.
Secondly,anedgecomputingplatformisneededforresourcemanagementandtask
schedulingonedgenodes.Finally,itisnecessarytosolvethetaskoffloadinganddata
securityproblemsincloud-basedcollaborativeAI.[4]
AsAItechnologycontinuestoevolve,thelevelofintelligenceinedgedevices
hasbeenelevated.Initially,edgeintelligenceprimarilyfocusedonrunningAI
algorithmsandmodelsonedgedevicestoachieverapiddataprocessingandresponse.
Thisapproachhadarelativelylowlevelofintelligencebecausethefunctionalityand
performanceofedgedeviceswerelimited,preventingtheexecutionofcomplexAI
4/123
algorithmsandmodels.[5]Withongoingtechnologicaladvancements,theperformance
andintelligenceofedgedeviceshavesignificantlyimproved.Inthisprocess,the
conceptofedge-nativeintelligencehasgraduallyemerged.Edge-nativeintelligence
emphasizestheintegrationofAItechnologyintoedgedevices,enablingthemtohave
autonomousdataprocessingandanalysiscapabilities.Thisapproachenablesedge
devicestobetteradapttocomplexapplicationscenarios,andimprovethespeedand
efficiencyofdataprocessingandresponse.[6]
1.3ImportanceofEdge-NativeIntelligence
Theimportanceofedge-nativeintelligenceincludesthefollowingaspects:
(1)FullUnleashingofDataPotentialattheNetworkEdgeThroughAI:Withthe
surgeinthenumberofmobiledevices,amassiveamountofdata(e.g.,audio,images,
andvideos)willbegeneratedatthedeviceend.TheintroductionofAIalgorithms
willbeessentialatthispoint,astheycanquicklyanalyzetheselargevolumesofdata
andextractfeaturesfromthem,leadingtohigh-qualitydecision-makingandimproved
efficiencyandreliabilityofdataprocessing.Thishelpstoreducemanualintervention
anderrorrates,improvingserviceefficiencyandreliability.[7]
(2)ExpansionofIntelligentAlgorithmDeploymentScopewithRicherDataand
ApplicationScenarios:Inthetraditionalcloudcomputingmodel,datasourcesare
generallyuploadedandstoredinthecloudduetoitsextremelyhighcomputing
performance.[8]However,withtherapiddevelopmentoftheInternetofEverythingera,
thetraditionalcloudcomputingmodelisgraduallyshiftingtowardstheedge
computingmodel.Inthefuture,theedgesidewillgenerateamassiveamountofIoT
data.IfallofthisdataneedstobeuploadedtothecloudforAIalgorithmprocessing,
itwilloccupyalargeamountofbandwidthresourcesandputagreatdealof
computingpressureonthecloudcomputingdatacenter.Toaddressthesechallenges,
offloadingcloudcomputingpowertotheedgeenableslow-latencydataprocessing,
thusachievingahigh-performanceedgeintelligenceprocessingmodel.[9]
(3)BetterSystemAvailabilityandScalabilitywithEdge-NativeIntelligence:AI
5/123
technologyhasachievedtremendoussuccessinmanydigitalproductsandservicesin
dailylife,suchasvideosurveillanceandsmarthomes.AIisalsoacriticaldriving
forceattheforefrontofinnovation,includingareaslikeautonomousdrivingand
smartfinance.Therefore,AIshouldbeclosertopeople,data,andterminaldevices.In
theprocessofachievingthesegoals,asdataprocessingoccurslocally,edgedevices
cancontinuetooperateevenifthecentralserverencountersissues.Additionally,with
theadditionofnewapplicationsorupgradestoexistingones,edgedevicescaneasily
expandormodify,providinggreaterflexibility.
(4)EnhancedAvailabilityandAccessibilityofAIApplications:Withthe
enhancedprocessingcapabilitiesofedgedevices,moreAIapplicationscanrunonthe
devicesthemselves,ratherthanrelyingsolelyoncloudservers.Thisincreasesthe
usabilityandaccessibilityofAI.[10]
References
[1]S.Talwar,N.Himayat,H.Nikopour,F.Xue,G.WuandV.Ilderem,“6G:
ConnectivityintheEraofDistributedIntelligence,”IEEECommunications
Magazine,vol.59,no.11,pp.45-50,Nov.2021.
[2]M.ElsayedandM.Erol-Kantarci,“AI-EnabledFutureWirelessNetworks:
Challenges,Opportunities,andOpenIssues,”IEEEVehicularTechnology
Magazine,vol.14,no.3,pp.70-77,Sep.2019.
[3]S.Deng,H.Zhao,W.Fang,J.Yin,S.DustdarandA.Y.Zomaya,“Edge
Intelligence:TheConfluenceofEdgeComputingandArtificialIntelligence,”
IEEEInternetofThingsJournal,vol.7,no.8,pp.7457-7469,Aug.2020.
[4]M.Pan,W.SuandY.Wang,“ReviewofResearchontheCurriculumfor
ArtificialIntelligenceandIndustrialAutomationbasedonEdgeComputing,”
2021InternationalConferenceonNetworkingandNetworkApplications(NaNA),
LijiangCity,China,2021,pp.222-226.
[5]Y.Xiao,G.Shi,Y.Li,W.SaadandH.V.Poor,“TowardSelf-LearningEdge
Intelligencein6G,”IEEECommunicationsMagazine,vol.58,no.12,pp.34-40,
Dec.2020..
[6]H.HuandC.Jiang,“EdgeIntelligence:ChallengesandOpportunities,”2020
InternationalConferenceonComputer,InformationandTelecommunication
Systems(CITS),Hangzhou,China,2020,pp.1-5.
[7]M.Mukherjee,R.Matam,C.X.Mavromoustakis,H.Jiang,G.MastorakisandM.
Guo,“IntelligentEdgeComputing:SecurityandPrivacyChallenges,”IEEE
CommunicationsMagazine,vol.58,no.9,pp.26-31,Sep.2020.
[8]Y.Sun,B.Xie,S.ZhouandZ.Niu,“MEET:Mobility-EnhancedEdge
inTelligenceforSmartandGreen6GNetworks,”IEEECommunications
Magazine,vol.61,no.1,pp.64-70,Jan.2023.
6/123
[9]Q.Cui,Z.Gong,W.Ni,Y.Hou,X.Chen,X.Tao,P.Zhang,“StochasticOnline
LearningforMobileEdgeComputing:LearningfromChanges,”IEEE
CommunicationsMagazine,vol.57,no.3,pp.63-69,Mar.2019.
[10]M.Yao,M.Sohul,V.MarojevicandJ.H.Reed,“ArtificialIntelligenceDefined
5GRadioAccessNetworks,”IEEECommunicationsMagazine,vol.57,no.3,pp.
14-20,Mar.2019.
2.6GEdgeIntelligenceNetworksand
Infrastructure
2.1Edge-NativeIntelligenceArchitecturefor6G
Asakeyenablingtechnologyforthenextgenerationofradiowirelessnetworks,
Multi-accessEdgeComputing(MEC)cansupportaplethoraofemergingservices.
WiththecontinuousdevelopmentofAI,itsapplicationinMECisbecoming
increasinglywidespread.However,in5Gnetworks,AIisonlyusedasanadd-on
applicationtoassistMEC.In6Gnetworks,MECwillincorporateAIfromtheinitial
designphase,treatingitasanintegralpartoftheMECsystem.Thisapproachaimsto
enhancetheflexibilityandopennessofMEC,betteraddressingtheconstantly
emergingapplicationscenariosanduserdemands.Asaresult,theedge-native
intelligencearchitecturehasbeenproposed,whichisbasedonthedecouplingand
reconstructionofAIfunctionstoprovideuserswithcustomizedAIservices.
2.1.1OverviewoftheArchitecture
Theedge-nativeintelligencearchitectureconsistsof"fourlayersandthree
planes",asshowninFigure2.1.The"fourlayers"includetheinfrastructurelayer,
virtualizationlayer,functionlayer,andapplicationlayer;the"threeplanes"include
thecontrolplane,AIplane,andmanagementandorchestration(MANO)plane.
7/123
Figure2.1Edge-NativeIntelligenceArchitecture
I.Fourlayers:
Infrastructurelayer:Locatedatthebottomoftheedge-nativeintelligence
architecture,itencompassesallcommunication,storage,andcomputingresources
inthesystem.CommunicationresourcesincludeWi-FiandtheInternet;storage
resourcesincludememory,HardDiskDrive(HDD)andSolidStateDrive(SSD);
computingresourcesincludeCentralProcessingUnit(CPU)andGraphics
ProcessingUnit(GPU).
Virtualizationlayer:Positionedabovetheinfrastructurelayer,itabstractsthe
underlyingresourcesintoaresourcepoolforusebyupper-layernetwork
functions.Whenservicedemandsarise,thevirtualizationlayercancreateDocker
containersandrunthemintheresourcepooltosupplynetworkfunctions,
ensuringtheirnormaloperationandtherebyguaranteeingcustomizedAIservices.
Functionlayer:Locatedabovethevirtualizationlayer,itconsistsofdecoupled
networkfunctions,namelycontrolfunctionsandAIfunctions,andaservicebus.
Differentnetworkfunctionscanbeactivated,released,andreconfiguredinreal
timebasedonservicerequirements,interconnectedthroughtheservicebus.
Applicationlayer:Locatedatthetopoftheedge-nativeintelligencearchitecture,
itincludesdiversenetworkapplications.Theapplicationlayerinteractsdirectly
withusersand,uponuserrequests,automaticallyinvokesthenetworkfunctions
8/123
ofthefunctionlayerandtheDockercontainersofthevirtualizationlayerto
provideservicestousers.
II.Threeplanes:
Controlplane:Itisresponsibleforthetransmissionandprocessingofcontrol
signalingfromtheinfrastructurelayertotheapplicationlayer.
MANOplane:IttransformsservicerequestsfromthecontrolplaneintoMANO
commandsandcoordinatesandmanagesthesystem'sfunctionsandresources.
TheMANOplaneincludestheVirtualizedInfrastructureManager(VIM),
FunctionalMANO,andApplicationMANO,dedicatedtothemanagementand
orchestrationofresources,functions,andapplications,respectively.
AIplane:AlsoknownasthenativeAIplane,itservesasthecoreaspectofthe
edge-nativeintelligencearchitecture,responsibleforlearninguserandnetwork
behavioranddemands,achievingself-operationofthenetwork.Itsvirtualization
layerprovidesaruntimeenvironmentlibraryforAIapplications,suchasPyTorch
andTensorFlow,whichcanbeselectedbasedonapplicationrequestsand
resourcestate.TheAIplaneincludesdecoupledAIfunctionsandaservicebusin
itsvirtualizationlayer,whileitsapplicationlayercomprisesatemplateselector
andanintelligentalgorithmmodellibraryforflexiblereconstructionof
edge-nativeintelligence.
2.1.2DesignandImplementationoftheNativeAIPlane
Intheedge-nativeintelligencearchitecture,themicroservice-basedAIplaneis
decoupledintoindependentAIfunctions.TheseAIfunctionscanbeactivatedand
invokedondemand.Whenanapplicationrequestarrives,thedecoupledAIfunctions
canbecombinedondemandtoprovideAIservicestousers,thusachieving
edge-nativeintelligence.
I.Decouplingofedge-nativeintelligenceplane:
AsshowninFigure2.1,intheedge-nativeintelligenceplane,AIservicesare
decoupledintoDataCollectionFunction(DCF),DataPreprocessingFunction(DPF),
9/123
ModelTrainingFunction(MTF),ModelValidationFunction(MVF),andData
StorageFunction(DSF).Eachfunctionisdescribedasfollows:
DCF:CollectsrawdatarequiredforAImodeltrainingandgeneratesthe
correspondingtrainingdataset.
DPF:Preprocessestherawdatacontaininginvalidcomponents.Removesinvalid
oroffsetcontentfromtherawdatathroughdatasampling,featureextraction,and
dimensionalityreduction.ConvertsthedataintotheformatrequiredforAImodel
training.
MTF:SelectstheappropriateAIalgorithmaccordingtoservicerequirementsand
trainsthecoremodeloftheAIalgorithm.
MVF:EvaluatestheperformanceoftheAImodelduringmodeltrainingor
real-timeinference.
DSF:StoresandmanagesalldataandAIF-relatedparametersoftheAIplane.
CommunicationandinteractionbetweendifferentAIfunctionsoccurthrougha
unifiedservicebus.Additionally,AIfunctionscancommunicatewithcontrol
functionsviatheservicebusandbeactivatedbyFunctionalMANObasedonservice
types.
II.Reconstructionofedge-nativeintelligenceplane:
Edge-nativeintelligencereconstructionborrowstheideaoftemplateand
instantiation.ItperformsAIfunctionactivation,runtimeconfiguration,andresource
allocationbasedonservicetypetoachievecustomizedAIservices.
Template:Providesacommonsolutionforaclassofedgeintelligentservicesby
extractingandabstractingtheircommonalities.Theedge-nativeintelligence
templateinvolveskeyelementssuchastemplateinformation(Tinf)andtemplate
identifier(Tid).TemplateinformationencompassesthecomponentsoftheAI
application,namelythetypesofAIF,requiredresources,andruntime
environments,storedintheintelligentalgorithmmodellibrary.Thetemplate
identifierdistinguishesdifferenttemplatescorrespondingtoAIapplicationsandis
storedinthetemplateselector.Beforeusingthetemplate,predefinedoperations
arenecessary,definingparametersrelatedtofunctionalityactivation,resource
10/123
allocation,andruntimeenvironmentconfigurationaccordingtospecificAI
applicationrequirements.
Instantiation:CreatesanAIapplicationinstancebasedontheparameters
definedinthetemplatetorespondtoAIservicerequests.AsshowninFigure2.2,
theedge-nativeintelligenceinstantiationprocessincludesthefollowingsteps:
1)MANOcontinuouslymonitorstheapplicationlayerandsendsatemplate
selectionrequesttothetemplateselectorwhenanapplicationrequestisreceived.
2)Thetemplateselectorselectsthecorrespondingtemplateaccordingtothe
applicationtypeandsendsitsTidtotheintelligentalgorithmmodellibraryto
requestTinf.
3)TheintelligentalgorithmmodellibraryextractsthecorrespondingTinf
ofthetemplateandprovidesfeedbacktothetemplateselector.
4)ThetemplateselectorsendsthereceivedTinftotheMANOplane.
5)TheMANOplaneperformstheinstantiationoperationaccordingtothe
receivedTinf:
(a)Configurestheruntimeenvironmentlibraryrequiredbytheapplication.
(b)Allocatestherequiredresources.
(c)ActivatestherelevantAIF.
11/123
Figure2.2Edge-NativeIntelligenceInstantiationProcess
2.2EdgeIntelligenceComputingInfrastructure
2.2.1EdgeIntelligentHardware
Withtherapiddevelopmentoftechnology,edgeintelligenthardwarehas
graduallybecomeafocalpointwheretheIoT,AI,andcloudcomputingintersect.This
typeofintelligenthardwarenotonlypossessesreal-timeandefficientdataprocessing
capabilitiesbutalsocanmakeintelligentdecisionsatthenetworkedge,significantly
alleviatingdataprocessingpressureonthecloudandimprovingoverallsystem
responsivenessandefficiency.
Intermsofcustomerdemands,edgeintelligenthardwarecaterstovarious
industries,placinghighrequirementsonadaptabilitytotheenvironment,real-time
12/123
processing,security,andstability.Forexample,insmartmanufacturing,edge
intelligenthardwarecancollect,process,andanalyzevariousdataonfactory
productionlinesinreal-time,enablingautomationandintelligenceintheproduction
process.Inthemedicalfield,edgeintelligenthardwarecananalyzepatients'
physiologicaldata,enablingremotehealthcareandintelligentdiagnosis.
Fromatechnicalperspective,edgeintelligenthardwareincorporatesadvanced
algorithmsanddataprocessingtechnologies,enablinghigh-efficiencydataprocessing
andanalysis.Additionally,itadoptsamultitudeofsensors,communication
technologies,andsoftwaredefinitions,achievinginterconnectednessand
interoperabilitywithvariousdevicesandsystems.Moreover,edgeintelligent
hardwarestandsoutwithitslowpowerconsumptionandhighreliability,readily
meetingtheusagerequirementsindiverseharshenvironments.
Intermsofproductforms,edgeintelligenthardwarecanmanifestinvarious
devicessuchasintelligentcameras,intelligentsensors,intelligentrobots,andedge
servers.Thesedevicescanconnectwithvariousequipmentandsystems,facilitating
datasharingandcollaborativeprocessing.Moreover,theycanundergoremote
managementandcontrolthroughthecloud,enablingremotemonitoringand
maintenanceofdevices.
I.Edgeintelligenthardwarerequirements
Asshowninthetablebelow,consideringthedistancefromthehardware
deploymentlocationtothedatacenter,edgeintelligenthardwarecanbecategorized
intoNearEdgeandFarEdge.NearEdgeprimarilyinvolvesthedescentofcloud
computing,resemblingclouddatacentersinfunctionality,withpowerfuland
comprehensivecomputingcapabilities.Thehardwareproductformsinclude
integratedcabinetsandheavy-edgeservers.FarEdgefocusesmoreonspecific
applicationsattheedgesite,withstrongrelevancetospecificapplicationssuchas
dataaggregation/transformations,protocolparsing,industrialcontrol,andAI
inference.Thehardwareproductformsarediverse,includingindustrialcomputers,
PLCs,gateways,andMEC.
13/123
FunctionProductExamples
Regionaldatacenters,CDN(contentdelivery
Deepedgecomputingnetworks),telecomdatacenters,hostingservice
Near
providers
Edge
Localdatacenters,heavy-edgeservers,microdata
Deepedgecomputing
centers(integratedcabinets)
Aggregationanalysisandcontrol,dataAIBox,MEC,HCI(hyper-converged
managementinfrastructure)
Aggregation,conversion,filtering,data
FarGateways,smallcells,routers,accesspoints
reduction,forwarding
Edge
Analogtodigitalconversion(sensors),
Industrialcomputers,PLC(programmablelogic
sendingcontroldata(actuators),direct
controller),DCS(distributedcontroller),etc.
analysis/control
Edgecomputinghardwareproductshavetheiruniquecharacteristics,distinct
fromthehardwareproductsofcloudcomputingandedgecomputing.Thereasons
behindthisdistinctionaretheprimarydemandsfacedbyedgecomputing:
(Ⅰ)Diverseandcomplexapplicationscenarios:
(1)Thediversityinedgedeploymentrequiresdifferentinfrastructure
combinations.Edgedeploymentspansvariousindustryapplications,userscenarios,
andverticaldomains.Itincludesawiderangeofinfrastructuresolutions,makingthe
edgesolutionecosystemhighlycomplexintermsofproductforms,configurations,
andmanagementtools.
(2)Edgecomputingisexperiencingrapidgrowthinindustriessuchas
telecommunications,utilities,manufacturing,andfinance.Telecomoperatorsare
activelybuildingedgecomputingplatforms,leadingmarketdevelopment.Other
industries,particularlyutilities,manufacturing,andfinance,arealsoacceleratingthe
adoptionofedgecomputingbydeployingdedicatededgeinfrastructuretoenhance
14/123
efficiencyinusecasessuchastheIndustrialInternet,gridmanagement,andsmart
commercialbuildings.
(3)ThevigorousdevelopmentoftechnologieslikeAI,machinelearning,big
datamodels,andheterogeneouscomputingfurtherpropelsthegrowthoftheedge
computingmarket.Theproliferationofcompute-intensiveanalyticalworkloadsis
ubiquitousinmanyindustriesandusecases,unlockingthepotentialofuntappeddata,
mostofwhichresidesorisgeneratedattheedge.Theexpectedconvergenceof
AI-nativecomputingcapabilitieswiththeperformancerequirementsofnewanalytical
platformswilldrivethegrowthofmanynewedgeinfrastructuredeployments.The
diversityofAIapplicationsalsodiversifiesthedemandforedgecomputinghardware,
software,services,andsolutions.
(Ⅱ)Longlifecycleproductdemands:
(1)Inedgecomputingapplicationsacrossvariousindustriesliketransportation,
healthcare,energy,andindustry,suchasrailtrafficcontrolsystems,mediumtolarge
medicalequipment,substation/distributionstationcontrolunits,andindustrialcontrol
DCS/MES,theproductsoftengothroughalonglifecycleinvolvingstagesofproduct
design,researchanddevelopment,testingandverification,implementationand
operation,andlatermaintenance.Therefore,5-7yearsorevenlongerlifecyclefor
edgecomputingproductsiscrucialfortheseapplicationscenarios.Thisnotonly
implieshigherstabilitybutalsomeanslowermaintenancecostsinthelaterstages.
(2)Thelonglifecycletargetstheentireservicesystem,includingnotonlyedge
computinghardwaredevicesbutalsoplatforms,serviceapplications,protocols,and
generateddatarunningonthehardwaredevices.
(3)Theextendedlifecycleencompassesnotjusttheruntimebutalsotheongoing
provision,service,updatestohardwaredevices,andthecontinuousevolutionof
platformsandserviceapplications.
(Ⅲ)Demandingoperatingenvironments:
(1)Harshphysicalconditions
Edgedevicesaredeployedindiverselocations,facingcomplexphysical
15/123
environ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026新疆阿克蘇人才發(fā)展集團(tuán)有限責(zé)任公司面向社會招聘合同制專任教師260人備考題庫及完整答案詳解
- 2025濰坊昌樂北大公學(xué)美加學(xué)校教師招聘備考題庫及參考答案詳解一套
- 2025年新版動畫片題庫及答案
- 2026安徽合肥工業(yè)大學(xué)管理學(xué)院大數(shù)據(jù)與信息系統(tǒng)團(tuán)隊(duì)科研助理招聘2人備考題庫及參考答案詳解一套
- 2025烏魯木齊市第十三中棟梁校區(qū)招聘備考題庫參考答案詳解
- 2026安徽安慶某國有企業(yè)招聘人才1人備考題庫完整答案詳解
- 2025廣東佛山市南海區(qū)國有資產(chǎn)監(jiān)督管理局財(cái)務(wù)總監(jiān)招聘1人備考題庫及答案詳解(考點(diǎn)梳理)
- 2026年度漯河市市直機(jī)關(guān)遴選公務(wù)員17人備考題庫有完整答案詳解
- 2026中共左貢縣委社會工作部選聘招聘社區(qū)工作者5人備考題庫(西藏)及答案詳解(易錯(cuò)題)
- 2026廣東藍(lán)海豚旅運(yùn)股份有限公司招聘1人備考題庫及參考答案詳解
- 自動控制原理仿真實(shí)驗(yàn)課程智慧樹知到答案2024年山東大學(xué)
- JBT 7946.2-2017 鑄造鋁合金金相 第2部分:鑄造鋁硅合金過燒
- 流程與TOC改善案例
- 【當(dāng)代中國婚禮空間設(shè)計(jì)研究4200字(論文)】
- GB/T 20322-2023石油及天然氣工業(yè)往復(fù)壓縮機(jī)
- 提撈采油安全操作規(guī)程
- DB3211-T 1048-2022 嬰幼兒日間照料托育機(jī)構(gòu)服務(wù)規(guī)范
- YY/T 1846-2022內(nèi)窺鏡手術(shù)器械重復(fù)性使用腹部沖吸器
- GB/T 15390-2005工程用焊接結(jié)構(gòu)彎板鏈、附件和鏈輪
- GA 1016-2012槍支(彈藥)庫室風(fēng)險(xiǎn)等級劃分與安全防范要求
- 安全管理人員紅頭任命文件
評論
0/150
提交評論