【研究院】全國(3)2025高考真題(理)分類匯編-立體幾何與空間向量(教師版)_第1頁
【研究院】全國(3)2025高考真題(理)分類匯編-立體幾何與空間向量(教師版)_第2頁
【研究院】全國(3)2025高考真題(理)分類匯編-立體幾何與空間向量(教師版)_第3頁
【研究院】全國(3)2025高考真題(理)分類匯編-立體幾何與空間向量(教師版)_第4頁
【研究院】全國(3)2025高考真題(理)分類匯編-立體幾何與空間向量(教師版)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025高考真題分類匯編——立體幾何1.(2025北京·理)某四棱錐的三視圖如圖所示,在此四棱錐的側(cè)面中,直角三角形的個(gè)數(shù)為()(A)1 (B)2(C)3 (D)41.C2.(2025全國I·理)某圓柱的高為2,底面周長為16,其三視圖如圖.圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C.3 D.22.B3.(2025全國I·理)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為()A. B. C. D.3.A4.(2025全國II·理)在長方體中,,,則異面直線與所成角的余弦值為()A. B. C. D.4.C5.(2025全國II·理)已知圓錐的頂點(diǎn)為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側(cè)面積為__________.5.6.(2025全國III·理)中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進(jìn)部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時(shí)帶卯眼的木構(gòu)件的俯視圖可以是()6.A7.(2025全國III·理)設(shè)是同一個(gè)半徑為4的球的球面上四點(diǎn),為等邊三角形且其面積為,則三棱錐體積的最大值為()A. B. C. D.7.B8.(2025江蘇)如圖所示,正方體的棱長為2,以其所有面的中心為頂點(diǎn)的多面體的體積為▲.8.9.(2025浙江)某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積(單位:cm3)是A.2 B.4 C.6 D.89.C10.(2025浙江)已知四棱錐S?ABCD的底面是正方形,側(cè)棱長均相等,E是線段AB上的點(diǎn)(不含端點(diǎn)),設(shè)SE與BC所成的角為θ1,SE與平面ABCD所成的角為θ2,二面角S?AB?C的平面角為θ3,則()A.θ1≤θ2≤θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤θ3≤θ110.D11.(2025天津·理)已知正方體的棱長為1,除面外,該正方體其余各面的中心分別為點(diǎn)E,F(xiàn),G,H,M(如圖),則四棱錐的體積為.11.12.(2025上海)《九章算術(shù)》中,稱底面為矩形而有一側(cè)棱垂直于底面的四棱錐為陽馬,設(shè)AA1是正六棱柱的一條側(cè)棱,如圖,若陽馬以該正六棱柱的頂點(diǎn)為頂點(diǎn)、以AA1為底面矩形的一邊,則這樣的陽馬的個(gè)數(shù)是()A.4 B.8 C.12 D.1612.D13.(2025北京·理)(本小題14分)如圖,在三棱柱ABC?中,平面ABC,D,E,F(xiàn),G分別為,AC,,的中點(diǎn),AB=BC=,AC==2.(1)求證:AC⊥平面BEF;(2)求二面角B?CD?C1的余弦值;(3)證明:直線FG與平面BCD相交.13.【解析】(1)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四邊形A1ACC1為矩形.又E,F(xiàn)分別為AC,A1C1的中點(diǎn),∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(2)由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如圖建立空間直角坐標(biāo)系E-xyz.由題意得B(0,2,0),C(-1,0,0),D(1,0,1),F(xiàn)(0,0,2),G(0,2,1).∴,設(shè)平面BCD的法向量為,∴,∴,令a=2,則b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量為,∴.由圖可得二面角B-CD-C1為鈍角,所以二面角B-CD-C1的余弦值為.(3)由(2)知平面BCD的法向量為,∵G(0,2,1),F(xiàn)(0,0,2),∴,∴,∴與不垂直,∴GF與平面BCD不平行且不在平面BCD內(nèi),∴GF與平面BCD相交.14.(2025全國I·理)(本小題12分)如圖,四邊形為正方形,分別為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)證明:平面平面;(2)求與平面所成角的正弦值.14.【解析】(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足為H.由(1)得,PH⊥平面ABFD.以H為坐標(biāo)原點(diǎn),的方向?yàn)閥軸正方向,為單位長,建立如圖所示的空間直角坐標(biāo)系H?xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.則為平面ABFD的法向量.設(shè)DP與平面ABFD所成角為,則.所以DP與平面ABFD所成角的正弦值為.15.(2025全國II·理)(本小題12分)如圖,在三棱錐中,,,為的中點(diǎn).(1)證明:平面;(2)若點(diǎn)在棱上,且二面角為,求與平面所成角的正弦值.15.【解析】(1)因?yàn)?,為的中點(diǎn),所以,且.連結(jié).因?yàn)椋詾榈妊苯侨切?,且,.由知.由知平面.?)如圖,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,建立空間直角坐標(biāo)系.由已知得取平面的法向量.設(shè),則.設(shè)平面的法向量為.由得,可取,所以.由已知可得.所以.解得(舍去),.所以.又,所以.所以與平面所成角的正弦值為.16.(2025全國III·理)(本小題12分)如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,是上異于,的點(diǎn).(1)證明:平面平面;(2)當(dāng)三棱錐體積最大時(shí),求面與面所成二面角的正弦值.16.【解析】(1)由題設(shè)知,平面CMD⊥平面ABCD,交線為CD.因?yàn)锽C⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因?yàn)镸為上異于C,D的點(diǎn),且DC為直徑,所以DM⊥CM.又BCCM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)以D為坐標(biāo)原點(diǎn),的方向?yàn)閤軸正方向,建立如圖所示的空間直角坐標(biāo)系D?xyz.當(dāng)三棱錐M?ABC體積最大時(shí),M為的中點(diǎn).由題設(shè)得,設(shè)是平面MAB的法向量,則即可取.是平面MCD的法向量,因此,,所以面MAB與面MCD所成二面角的正弦值是.17.(2025江蘇)(本小題共14分)在平行六面體中,.求證:(1)平面;(2)平面平面.17.【解析】(1)在平行六面體ABCD-A1B1C1D1中,AB∥A1B1.因?yàn)锳B平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面體ABCD-A1B1C1D1中,四邊形ABB1A1為平行四邊形.又因?yàn)锳A1=AB,所以四邊形ABB1A1為菱形,因此AB1⊥A1B.又因?yàn)锳B1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因?yàn)锳1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因?yàn)锳B1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.18.(2025江蘇)(本小題分)如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)P,Q分別為A1B1,BC的中點(diǎn).(1)求異面直線BP與AC1所成角的余弦值;(2)求直線CC1與平面AQC1所成角的正弦值.18.【解析】如圖,在正三棱柱ABC?A1B1C1中,設(shè)AC,A1C1的中點(diǎn)分別為O,O1,則OB⊥OC,OO1⊥OC,OO1⊥OB,以為基底,建立空間直角坐標(biāo)系O?xyz.因?yàn)锳B=AA1=2,所以.(1)因?yàn)镻為A1B1的中點(diǎn),所以,從而,故.因此,異面直線BP與AC1所成角的余弦值為.(2)因?yàn)镼為BC的中點(diǎn),所以,因此,.設(shè)n=(x,y,z)為平面AQC1的一個(gè)法向量,則即不妨取,設(shè)直線CC1與平面AQC1所成角為,則,所以直線CC1與平面AQC1所成角的正弦值為.19.(2025浙江)(本小題15分)如圖,已知多面體ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)證明:AB1⊥平面A1B1C1;(Ⅱ)求直線AC1與平面ABB1所成的角的正弦值.19.【解析】本題主要考查空間點(diǎn)、線、面位置關(guān)系,直線與平面所成的角等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力和運(yùn)算求解能力。滿分15分。方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如圖,過點(diǎn)作,交直線于點(diǎn),連結(jié).由平面得平面平面,由得平面,所以是與平面所成的角.由得,所以,故.因此,直線與平面所成的角的正弦值是.方法二:(Ⅰ)如圖,以AC的中點(diǎn)O為原點(diǎn),分別以射線OB,OC為x,y軸的正半軸,建立空間直角坐標(biāo)系O-xyz.由題意知各點(diǎn)坐標(biāo)如下因此由得.由得.所以平面.(Ⅱ)設(shè)直線與平面所成的角為.由(Ⅰ)可知設(shè)平面的法向量.由即可取.所以.因此,直線與平面所成的角的正弦值是.20.(2025天津·理)(本小題滿分14分)如圖,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(1)若M為CF的中點(diǎn),N為EG的中點(diǎn),求證:;(2)求二面角的正弦值;(3)若點(diǎn)P在線段DG上,且直線BP與平面ADGE所成的角為60°,求線段DP的長.20.【解析】本小題主要考查直線與平面平行、二面角、直線與平面所成的角等基礎(chǔ)知識(shí).考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運(yùn)算求解能力和推理論證能力.滿分13分.依題意,可以建立以D為原點(diǎn),分別以,,的方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系(如圖),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(xiàn)(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(1)證明:依題意=(0,2,0),=(2,0,2).設(shè)n0=(x,y,z)為平面CDE的法向量,則即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因?yàn)橹本€MN平面CDE,所以MN∥平面CDE.(2)解:依題意,可得=(–1,0,0),,=(0,–1,2).設(shè)n=(x,y,z)為平面BCE的法向量,則即不妨令z=1,可得n=(0,1,1).設(shè)m=(x,y,z)為平面BCF的法向量,則即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值為.(3)設(shè)線段DP的長為h(h∈[0,2]),則點(diǎn)P的坐標(biāo)為(0,0,h),可得.易知,=(0,2,0)為平面ADGE的一個(gè)法向量,故,由題意,可得=sin60°=,解得h=∈[0,2].所以線段的長為.21.(2025上海)(本小題滿分14分)已知圓錐的頂點(diǎn)為P,底面圓心為O,半徑為2.(1)設(shè)圓錐的母線長為4,求圓錐的體積;(2)設(shè)PO=4,OA、OB是底面半徑,且∠AOB=90°,M為線段AB的中點(diǎn),如圖.求異面直線PM與OB所成的角的大?。?1.【解答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論