版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.若函數(shù)與的圖象如圖所示,則函數(shù)的大致圖象為()A. B. C. D.2.在平面直角坐標系中,點P(m,1)與點Q(﹣2,n)關于原點對稱,則mn的值是()A.﹣2 B.﹣1 C.0 D.23.如圖,直角△ABC中,,,,以A為圓心,AC長為半徑畫四分之一圓,則圖中陰影部分的面積是()A. B.C. D.4.方程x2﹣2x+3=0的根的情況是()A.有兩個相等的實數(shù)根 B.只有一個實數(shù)根C.沒有實數(shù)根 D.有兩個不相等的實數(shù)根5.2019的相反數(shù)是()A. B.﹣ C.|2019| D.﹣20196.如圖,在同一平面直角坐標系中,一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,則不等式y(tǒng)1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<27.如圖,在邊長為的小正方形組成的網(wǎng)格中,的三個頂點在格點上,若點是的中點,則的值為()A. B. C. D.8.如圖,函數(shù)y1=x﹣1和函數(shù)的圖象相交于點M(2,m),N(﹣1,n),若y1>y2,則x的取值范圍是()A.x<﹣1或0<x<2 B.x<﹣1或x>2C.﹣1<x<0或0<x<2 D.﹣1<x<0或x>29.如圖,從左邊的等邊三角形到右邊的等邊三角形,經(jīng)過下列一次變化不能得到的是()A.軸對稱 B.平移 C.繞某點旋轉(zhuǎn) D.先平移再軸對稱10.圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側(cè)立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為()A.(54+10)cm B.(54+10)cm C.64cm D.54cm二、填空題(每小題3分,共24分)11.如果關于x的一元二次方程x2+2ax+a+2=0有兩個相等的實數(shù)根,那么實數(shù)a的值為.12.如圖,在平行四邊形ABCD中,點E在AD邊上,且AE:ED=1:2,若EF=4,則CE的長為___13.如圖,以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′的面積比是_____.14.點P是線段AB的黃金分割點(AP>BP),則=________.15.在銳角中,=0,則∠C的度數(shù)為____.16.如圖,直線y1=x+2與雙曲線y2=交于A(2,m)、B(﹣6,n)兩點.則當y1≤y2時,x的取值范圍是______.17.如圖,的直徑AB與弦CD相交于點,則______.18.瑞士中學教師巴爾末成功的從光譜數(shù)據(jù):,……中得到巴爾末公式,從而打開光譜奧妙的大門.請你根據(jù)以上光譜數(shù)據(jù)的規(guī)律寫出它的第七個數(shù)據(jù)___.三、解答題(共66分)19.(10分)已知關于的一元二次方程:.(1)求證:對于任意實數(shù),方程都有實數(shù)根;(2)當為何值時,方程的兩個根互為相反數(shù)?請說明理由.20.(6分)已知關于x的一元二次方程.(1)當m為何值時,方程有兩個不相等的實數(shù)根?(2)設方程兩根分別為、,且2、2分別是邊長為5的菱形的兩條對角線,求m的值.21.(6分)(1016內(nèi)蒙古包頭市)一幅長10cm、寬11cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:1.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm1.(1)求y與x之間的函數(shù)關系式;(1)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.22.(8分)下面是小東設計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.已知:如圖1,直線l及直線l外一點A.求作:直線AD,使得AD∥l.作法:如圖2,①在直線l上任取一點B,連接AB;②以點B為圓心,AB長為半徑畫弧,交直線l于點C;③分別以點A,C為圓心,AB長為半徑畫弧,兩弧交于點D(不與點B重合);④作直線AD.所以直線AD就是所求作的直線.根據(jù)小東設計的尺規(guī)作圖過程,完成下面的證明.(說明:括號里填推理的依據(jù))證明:連接CD.∵AD=CD=__________=__________,∴四邊形ABCD是().∴AD∥l().23.(8分)如圖1,AD、BD分別是△ABC的內(nèi)角∠BAC、∠ABC的平分線,過點A作AE⊥AD,交BD的延長線于點E.(1)求證:∠E=∠C;(2)如圖2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數(shù).24.(8分)如圖,拋物線交軸于點和點,交軸于點.(1)求這個拋物線的函數(shù)表達式;(2)若點的坐標為,點為第二象限內(nèi)拋物線上的一個動點,求四邊形面積的最大值.25.(10分)已知二次函數(shù).求證:不論為何實數(shù),此二次函數(shù)的圖像與軸都有兩個不同交點.26.(10分)在平面直角坐標系中,己知,.點從點開始沿邊向點以的速度移動;點從點開始沿邊內(nèi)點以的速度移動.如果、同時出發(fā),用表示移動的時間.(1)用含的代數(shù)式表示:線段_______;______;(2)當為何值時,四邊形的面積為.(3)當與相似時,求出的值.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】首先根據(jù)二次函數(shù)及反比例函數(shù)的圖象確定k、b的符號,然后根據(jù)一次函數(shù)的性質(zhì)確定答案即可.【詳解】∵二次函數(shù)的圖象開口向上,對稱軸>0∴a>0,b<0,
又∵反比例函數(shù)的圖形位于二、四象限,∴-k<0,∴k>0
∴函數(shù)y=kx-b的大致圖象經(jīng)過一、二、三象限.故選:
A本題考查的是利用反比例函數(shù)和二次函數(shù)的圖象確定一次函數(shù)的系數(shù),然后根據(jù)一次函數(shù)的性質(zhì)確定其大致圖象,確定一次函數(shù)的系數(shù)是解決本題的關鍵.2、A【分析】已知在平面直角坐標系中,點P(m,1)與點Q(﹣2,n)關于原點對稱,則P和Q兩點橫坐標互為相反數(shù),縱坐標互為相反數(shù)即可求得m,n,進而求得mn的值.【詳解】∵點P(m,1)與點Q(﹣2,n)關于原點對稱∴m=2,n=-1∴mn=-2故選:A本題考查了直角坐標系中,關于原點對稱的兩個點的坐標特點,它們的橫坐標互為相反數(shù),縱坐標互為相反數(shù).3、A【分析】連結(jié)AD.根據(jù)圖中陰影部分的面積=三角形ABC的面積-三角形ACD的面積-扇形ADE的面積,列出算式即可求解.【詳解】解:連結(jié)AD.
∵直角△ABC中,∠A=90°,∠B=30°,AC=4,
∴∠C=60°,AB=4,
∵AD=AC,
∴三角形ACD是等邊三角形,
∴∠CAD=60°,
∴∠DAE=30°,
∴圖中陰影部分的面積=4×4÷2-4×2÷2-=4-π.
故選A.本題考查了扇形面積的計算,解題的關鍵是將不規(guī)則圖形的面積計算轉(zhuǎn)化為規(guī)則圖形的面積計算.4、C【解析】試題分析:利用根的判別式進行判斷.解:∵∴此方程無實數(shù)根.故選C.5、D【解析】根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案【詳解】2019的相反數(shù)是﹣2019,故選D.此題考查相反數(shù),掌握相反數(shù)的定義是解題關鍵6、C【解析】一次函數(shù)y1=kx+b落在與反比例函數(shù)y2=圖象上方的部分對應的自變量的取值范圍即為所求.【詳解】∵一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,∴不等式y(tǒng)1>y2的解集是﹣3<x<0或x>2,故選C.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結(jié)合是解題的關鍵.7、C【分析】利用勾股定理求出△ABC的三邊長,然后根據(jù)勾股定理的逆定理可以得出△ABC為直角三角形,再利用直角三角形斜邊中點的性質(zhì),得出AE=CE,從而得到∠CAE=∠ACB,然后利用三角函數(shù)的定義即可求解.【詳解】解:依題意得,AB=,AC=,BC=,∴AB2+AC2=BC2,
∴△ABC是直角三角形,
又∵E為BC的中點,
∴AE=CE,
∴∠CAE=∠ACB,
∴sin∠CAE=sin∠ACB=.故選:C.此題主要考查了三角函數(shù)的定義,也考查了勾股定理及其逆定理,首先根據(jù)圖形利用勾股定理求出三角形的三邊長,然后利用勾股定理的逆定理和三角函數(shù)即可解決問題.8、D【解析】析:根據(jù)反比例函數(shù)的自變量取值范圍,y1與y1圖象的交點橫坐標,可確定y1>y1時,x的取值范圍.解答:解:∵函數(shù)y1=x-1和函數(shù)y1=的圖象相交于點M(1,m),N(-1,n),∴當y1>y1時,那么直線在雙曲線的上方,∴此時x的取值范圍為-1<x<0或x>1.故選D.點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題的運用.關鍵是根據(jù)圖象的交點坐標,兩個函數(shù)圖象的位置確定自變量的取值范圍.9、A【分析】根據(jù)對稱,平移和旋轉(zhuǎn)的定義,結(jié)合等邊三角形的性質(zhì)分析即可.【詳解】解:從左邊的等邊三角形到右邊的等邊三角形,可以利用平移或繞某點旋轉(zhuǎn)或先平移再軸對稱,只軸對稱得不到,故選:A.本題考查了圖形的變換:旋轉(zhuǎn)、平移和對稱,等邊三角形的性質(zhì),掌握圖形的變換是解題的關鍵.10、C【分析】過A作AE⊥CP于E,過B作BF⊥DQ于F,則可得AE和BF的長,依據(jù)端點A與B之間的距離為10cm,即可得到可以通過閘機的物體的最大寬度.【詳解】如圖所示,過A作AE⊥CP于E,過B作BF⊥DQ于F,則Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵點A與B之間的距離為10cm,∴通過閘機的物體的最大寬度為27+10+27=64(cm),故選C.本題主要考查了特殊角的三角函數(shù)值,特殊角的三角函數(shù)值應用廣泛,一是它可以當作數(shù)進行運算,二是具有三角函數(shù)的特點,在解直角三角形中應用較多.二、填空題(每小題3分,共24分)11、﹣1或1【解析】試題分析:根據(jù)方程有兩個相等的實數(shù)根列出關于a的方程,求出a的值即可.∵關于x的一元二次方程x1+1ax+a+1=0有兩個相等的實數(shù)根,∴△=0,即4a1﹣4(a+1)=0,解得a=﹣1或1.考點:根的判別式.12、1【分析】根據(jù)AE:ED=1:2,得到BC=3AE,證明△DEF∽△BCF,得到,求出FC,即可求出CE.【詳解】解:∵AE:ED=1:2,∴DE=2AE,∵四邊形ABCD是平行四邊形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案為:1.【知識點】本題考查平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì),理解相似三角形的判定與性質(zhì)定理是解題關鍵.13、1:1.【解析】根據(jù)位似變換的性質(zhì)定義得到四邊形ABCD與四邊形A′B′C′D′相似,根據(jù)相似多邊形的性質(zhì)計算即可.【詳解】解:以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′相似,相似比為1:2,∴四邊形ABCD與四邊形A′B′C′D′的面積比是1:1,故答案為:1:1.本題考查的是位似變換,如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形.14、.【解析】解:∵點P是線段AB的黃金分割點(AP>BP),∴=.故答案為.點睛:本題考查了黃金分割的定義,牢記黃金分割比是解題的關鍵.15、75°【分析】由非負數(shù)的性質(zhì)可得:,可求,從而利用三角形的內(nèi)角和可得答案.【詳解】解:由題意,得sinA=,cosB=,解得∠A=60°,∠B=45°,∠C=180°﹣∠A﹣∠B=75°,故答案為:75°.本題考查了非負數(shù)的性質(zhì):偶次方、三角形的內(nèi)角和定理,特殊角的三角函數(shù)值,掌握以上知識是解題的關鍵.16、x≤﹣6或0<x≤1【解析】當y1≤y1時,x的取值范圍就是當y1的圖象與y1重合以及y1的圖象落在y1圖象的下方時對應的x的取值范圍.【詳解】根據(jù)圖象可得當y1≤y1時,x的取值范圍是:x≤-6或0<x≤1.故答案為x≤-6或0<x≤1.本題考查了反比例函數(shù)與一次函數(shù)圖象的交點問題,理解當y1≤y1時,求x的取值范圍就是求當y1的圖象與y1重合以及y1的圖象落在y1圖象的下方時對應的x的取值范圍,解答此題時,采用了“數(shù)形結(jié)合”的數(shù)學思想.17、【解析】分析:由已知條件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,結(jié)合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.詳解:∵AB是的直徑,∴∠ACB=90°,又∵AC=3,AB=5,∴BC=,∴tan∠ABC=,又∵∠ADC=∠ABC,∴tan∠ADC=.故答案為:.點睛:熟記“圓的相關性質(zhì)和正切函數(shù)的定義”解得本題的關鍵.18、【分析】分子的規(guī)律依次是,32,42,52,62,72,82,92…,分母的規(guī)律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七個數(shù)據(jù)是.【詳解】解:由數(shù)據(jù)可得規(guī)律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七個數(shù)據(jù)是.主要考查了學生的分析、總結(jié)、歸納能力,規(guī)律型的習題一般是從所給的數(shù)據(jù)和運算方法進行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.三、解答題(共66分)19、(1)見解析;(2)1,理由見解析.【解析】試題分析:(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△=(t﹣3)2≥0,由此可證出:對于任意實數(shù)t,方程都有實數(shù)根;(2)設方程的兩根分別為m、n,由方程的兩根為相反數(shù)結(jié)合根與系數(shù)的關系,即可得出m+n=t﹣1=0,解之即可得出結(jié)論.試題解析:(1)證明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴對于任意實數(shù)t,方程都有實數(shù)根;(2)解:設方程的兩根分別為m、n,∵方程的兩個根互為相反數(shù),∴m+n=t﹣1=0,解得:t=1.∴當t=1時,方程的兩個根互為相反數(shù).考點:根與系數(shù)的關系;根的判別式.20、(1);(2)【分析】(1)由根的判別式即可求解;(2)根據(jù)菱形對角線互相垂直且平分,由勾股定理得,又由一元二次方程根與系數(shù)的關系,所以有,據(jù)此列出關于m的方程求解.【詳解】(1)∵方程有兩個不相等的實數(shù)根,∴解得:∴當時,方程有兩個不相等的實數(shù)根;(2)由題意得:∴解得:或∵2、2分別是邊長為5的菱形的兩條對角線∴,即∴本題考查一元二次方程根的判別式、結(jié)合菱形的性質(zhì)考查勾股定理和韋達定理,熟知一元二次方程根與系數(shù)的關系是解題關鍵.21、(1);(1)橫彩條的寬度為3cm,豎彩條的寬度為1cm.【分析】(1)由橫、豎彩條的寬度比為3:1知橫彩條的寬度為xcm,根據(jù)“三條彩條面積=橫彩條面積+1條豎彩條面積﹣橫豎彩條重疊矩形的面積”,列出函數(shù)關系式化簡即可;(1)根據(jù)“三條彩條所占面積是圖案面積的”,可列出關于x的一元二次方程,整理后求解即可.【詳解】(1)根據(jù)題意可知,橫彩條的寬度為xcm,∴y=10×x+1×11?x﹣1×x?x=﹣3x1+54x,即y與x之間的函數(shù)關系式為y=﹣3x1+54x;(1)根據(jù)題意,得:﹣3x1+54x=×10×11,整理,得:x1﹣18x+31=0,解得:x1=1,x1=16(舍),∴x=3,答:橫彩條的寬度為3cm,豎彩條的寬度為1cm.考點:根據(jù)實際問題列二次函數(shù)關系式;一元二次方程的應用.22、BC=AB,菱形(四邊相等的四邊形是菱形),菱形的對邊平行.【解析】由菱形的判定及其性質(zhì)求解可得.【詳解】證明:連接CD.∵AD=CD=BC=AB,∴四邊形ABCD是菱形(四條邊都相等的四邊形是菱形).∴AD∥l(菱形的對邊平行)此題考查菱形的判定,掌握判定定理是解題關鍵.23、(1)證明見詳解;(2);(3)30°或45°.【分析】(1)由題意:∠E=90°-∠ADE,證明∠ADE=90°-∠C即可解決問題.(2)延長AD交BC于點F.證明AE∥BC,可得∠AFB=∠EAD=90°,,由BD:DE=2:3,可得cos∠ABC=;(3)因為△ABC與△ADE相似,∠DAE=90°,所以∠ABC中必有一個內(nèi)角為90°因為∠ABC是銳角,推出∠ABC≠90°.接下來分兩種情形分別求解即可.【詳解】(1)證明:如圖1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE=(∠ABC+∠BAC)=90°-∠C,∴∠E=90°-(90°-∠C)=∠C.(2)解:延長AD交BC于點F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC=;(3)∵△ABC與△ADE相似,∠DAE=90°,∴∠ABC中必有一個內(nèi)角為90°∵∠ABC是銳角,∴∠ABC≠90°.①當∠BAC=∠DAE=90°時,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°;②當∠C=∠DAE=90°時,∠E=∠C=45°,∴∠EDA=45°,∵△ABC與△ADE相似,∴∠ABC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店客房設備采購與供應商管理制度
- 酒店財務預算管理制度
- 濟寧線下培訓班
- 槍支培訓工作匯報
- 松花粉培訓課件
- 2024-2025學年山東省聊城市高一下學期期中考試歷史試題 (解析版)
- 2026年網(wǎng)絡系統(tǒng)管理與維護實操指南安全與管理試題集
- 2026年金融投資顧問招聘考試模擬題
- 2026年化學工程安全與環(huán)保知識試題集
- 2026年環(huán)境心理學與人力資源管理壓力管理與激勵機制測試題
- 全文版曼娜回憶錄
- GB/T 1965-2023多孔陶瓷室溫彎曲強度試驗方法
- 六年級語文非連續(xù)性文本專項訓練
- 體育單招核心1700單詞
- 梨樹溝礦區(qū)金礦2022年度礦山地質(zhì)環(huán)境治理計劃書
- 師德規(guī)范關愛學生
- 太陽能光伏發(fā)電裝置的開發(fā)與推廣商業(yè)計劃書
- 海水淡化用閥門
- GB/T 36377-2018計量器具識別編碼
- GB/T 26332.3-2015光學和光子學光學薄膜第3部分:環(huán)境適應性
- GB/T 17626.4-2008電磁兼容試驗和測量技術電快速瞬變脈沖群抗擾度試驗
評論
0/150
提交評論