2024-2025學年浙江省寧波市四校九年級數(shù)學第一學期期末預測試題含解析_第1頁
2024-2025學年浙江省寧波市四校九年級數(shù)學第一學期期末預測試題含解析_第2頁
2024-2025學年浙江省寧波市四校九年級數(shù)學第一學期期末預測試題含解析_第3頁
2024-2025學年浙江省寧波市四校九年級數(shù)學第一學期期末預測試題含解析_第4頁
2024-2025學年浙江省寧波市四校九年級數(shù)學第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知關于軸對稱點為,則點的坐標為()A. B. C. D.2.拋物線的頂點坐標是()A.(2,1) B. C. D.3.如圖,在△ABC中,M,N分別為AC,BC的中點.則△CMN與△CAB的面積之比是()A.1:2 B.1:3 C.1:4 D.1:94.四位同學在研究函數(shù)(是常數(shù))時,甲發(fā)現(xiàn)當時,函數(shù)有最小值;乙發(fā)現(xiàn)是方程的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當時,,已知這四位同學中只有一位發(fā)現(xiàn)的結論是錯誤的,則該同學是()A.甲 B.乙 C.丙 D.丁5.如圖,以(1,-4)為頂點的二次函數(shù)y=ax2+bx+c的圖象與x軸負半軸交于A點,則一元二次方程ax2+bx+c=0的正數(shù)解的范圍是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.如圖,中,且,若點在反比例函數(shù)的圖象上,點在反比例函數(shù)的圖象上,則的值為()A. B. C. D.7.已知與各邊相切于點,,則的半徑()A. B. C. D.8.的值等于()A. B. C. D.9.若拋物線y=x2+bx+c與x軸只有一個公共點,且過點A(m,n),B(m+8,n),則n=()A.0 B.3 C.16 D.910.將拋物線向左平移2個單位后所得到的拋物線為()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,將△ABC繞點A逆時針旋轉的到△ADE,點C和點E是對應點,若∠CAE=90°,AB=1,則BD=_________.12.拋物線y=5(x﹣4)2+3的頂點坐標是_____.13.如圖,△ABC是⊙O的內接三角形,∠A=120°,過點C的圓的切線交BO于點P,則∠P的度數(shù)為_____.14.若記表示任意實數(shù)的整數(shù)部分,例如:,,…,則(其中“+”“-”依次相間)的值為______.15.如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB=2.將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,則平移距離為_____.16.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.17.如圖,坡角為30°的斜坡上兩樹間的水平距離AC為2m,則兩樹間的坡面距離AB為___________________18.小明身高是1.6m,影長為2m,同時刻教學樓的影長為24m,則樓的高是_____.三、解答題(共66分)19.(10分)已知銳角△ABC內接于⊙O,OD⊥BC于點D.(1)若∠BAC=60°,⊙O的半徑為4,求BC的長;(2)請用無刻度直尺畫出△ABC的角平分線AM.(不寫作法,保留作圖痕跡)20.(6分)解方程:4x2﹣8x+3=1.21.(6分)如圖,拋物線與軸交于點和點,與軸交于點,其對稱軸為,為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標;(2)當點在運動過程中,求四邊形面積最大時的值及此時點的坐標.22.(8分)某公司經銷一種成本為10元的產品,經市場調查發(fā)現(xiàn),在一段時間內,銷售量(件)與銷售單價(元/件)的關系如下表:15202530550500450400設這種產品在這段時間內的銷售利潤為(元),解答下列問題:(1)如是的一次函數(shù),求與的函數(shù)關系式;(2)求銷售利潤與銷售單價之間的函數(shù)關系式;(3)求當為何值時,的值最大?最大是多少?23.(8分)已知:如圖,在⊙O中,弦交于點,.求證:.24.(8分)某運動品牌對第一季度A、B兩款運動鞋的銷售情況進行統(tǒng)計,兩款運動鞋的銷售量及總銷售額如圖所示:(1)一月份B款運動鞋的銷售量是A款的80%,則一月份B款運動鞋銷售了多少雙?(2)第一季度這兩款運動鞋的銷售單價保持不變,求三月份的總銷售額(銷售額=銷售單價×銷售量)(3)結合第一季度的銷售情況,請你對這兩款運動鞋的進貨、銷售等方面提出一條建議.25.(10分)為了“城市更美好、人民更幸?!?,我市開展“三城聯(lián)創(chuàng)”活動,環(huán)衛(wèi)部門要求垃圾按三類分別裝袋、投放,其中類指廢電池,過期藥品等有毒垃圾,類指剩余食品等廚余垃圾,類指塑料、廢紙等可回收垃圾,甲、乙兩人各投放一袋垃圾.(1)甲投放的垃圾恰好是類的概率是;(2)用樹狀圖或表格求甲、乙兩人投放的垃圾是不同類別的概率.26.(10分)某果園有100棵橙子樹,每一棵樹平均結600個橙子.現(xiàn)準備多種一些橙子樹以提高產量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經驗估計,每多種一棵樹,平均每棵樹就會少結5個橙子.(1)如果果園既要讓橙子的總產量達到60375個,又要確保每一棵橙子樹接受到的陽光照射盡量少受影響,那么應該多種多少棵橙子樹?(2)增種多少棵橙子樹,可以使果園橙子的總產量最多?最多為多少?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】利用關于x軸對稱的點坐標的特點即可解答.【詳解】解:∵關于軸對稱點為∴的坐標為(-3,-2)故答案為D.本題考查了關于x軸對稱的點坐標的特點,即識記關于x軸對稱的點坐標的特點是橫坐標不變,縱坐標變?yōu)橄喾磾?shù).2、D【分析】根據(jù)拋物線頂點式解析式直接判斷即可.【詳解】解:拋物線解析式為:,∴拋物線頂點坐標為:(﹣2,1)故選:D.此題根據(jù)拋物線頂點式解析式求頂點坐標,掌握頂點式解析式的各項的含義是解此題的關鍵.3、C【解析】由M、N分別為AC、BC的中點可得出MN∥AB,AB=2MN,進而可得出△ABC∽△MNC,根據(jù)相似三角形的性質即可得到結論.【詳解】∵M、N分別為AC、BC的中點,∴MN∥AB,且AB=2MN,∴△ABC∽△MNC,∴()2=.故選C.本題考查了相似三角形的判定與性質以及三角形中位線定理,根據(jù)三角形中位線定理結合相似三角形的判定定理找出△ABC∽△MNC是解題的關鍵.4、B【分析】利用假設法逐一分析,分別求出二次函數(shù)的解析式,再判斷與假設是否矛盾即可得出結論.【詳解】解:A.假設甲同學的結論錯誤,則乙、丙、丁的結論都正確由乙、丁同學的結論可得解得:∴二次函數(shù)的解析式為:∴當x=時,y的最小值為,與丙的結論矛盾,故假設不成立,故本選項不符合題意;B.假設乙同學的結論錯誤,則甲、丙、丁的結論都正確由甲、丙的結論可得二次函數(shù)解析式為當x=2時,解得y=4,當x=-1時,y=7≠0∴此時符合假設條件,故本選項符合題意;C.假設丙同學的結論錯誤,則甲、乙、丁的結論都正確由甲乙的結論可得解得:∴當x=2時,解得:y=-3,與丁的結論矛盾,故假設不成立,故本選項不符合題意;D.假設丁同學的結論錯誤,則甲、乙、丙的結論都正確由甲、丙的結論可得二次函數(shù)解析式為當x=-1時,解得y=7≠0,與乙的結論矛盾,故假設不成立,故本選項不符合題意.故選B.此題考查的是利用待定系數(shù)法求二次函數(shù)解析式,利用假設法求出b、c的值是解決此題的關鍵.5、C【解析】試題解析:∵二次函數(shù)y=ax2+bx+c的頂點為(1,-4),∴對稱軸為x=1,而對稱軸左側圖象與x軸交點橫坐標的取值范圍是-3<x<-2,∴右側交點橫坐標的取值范圍是4<x<1.故選C.考點:圖象法求一元二次方程的近似根.6、D【分析】要求函數(shù)的解析式只要求出點B的坐標就可以,設點A的坐標是,過點A、B作AC⊥y軸、BD⊥y軸,分別于C、D.根據(jù)條件得到△ACO∽△ODB,利用相似三角形對應邊成比例即可求得點B的坐標,問題即可得解.【詳解】如圖,過點A,B作AC⊥y軸,BD⊥y軸,垂足分別為C,D,設點A的坐標是,

則,

∵點A在函數(shù)的圖象上,∴,∵∠AOB=90°,

∴∠AOC+∠BOD=∠AOC+∠CAO=90°,

∴∠CAO=∠BOD,

∴,∴∴,

∴,

∵點B在反比例函數(shù)的圖象上,

∴.故選:D本題是反比例函數(shù)與幾何的綜合,考查了求函數(shù)的解析式的問題以及相似三角形的判定和性質,能夠把求反比例函數(shù)的解析式轉化為求點的坐標的問題是解題的關鍵.7、C【分析】根據(jù)內切圓的性質,得到,AE=AD=5,BD=BF=2,CE=CF=3,作BG⊥AC于點G,然后求出BG的長度,利用面積相等即可求出內切圓的半徑.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF,作BG⊥AC于點G,∵是的內切圓,∴,AE=AD=5,BD=BF=2,CE=CF=3,∴AC=8,AB=7,BC=5,在Rt△BCG和Rt△ABG中,設CG=x,則AG=,由勾股定理,得:,∴,解得:,∴,∴,∵,∴;故選:C.本題考查了三角形內切圓的性質,利用勾股定理解直角三角形,以及利用面積法求線段的長度,解題的關鍵是掌握三角形內切圓的性質,熟練運用三角形面積相等進行解題.8、A【分析】根據(jù)特殊角的三角函數(shù)值解題即可.【詳解】解:cos60°=.故選A.本題考查了特殊角的三角函數(shù)值.9、C【分析】根據(jù)點A、B的坐標易求該拋物線的對稱軸是x=m+1.故設拋物線解析式為y=(x+m+1)2,直接將A(m,n)代入,通過解方程來求n的值.【詳解】∵拋物線y=x2+bx+c過點A(m,n),B(m+8,n),∴對稱軸是x==m+1.又∵拋物線y=x2+bx+c與x軸只有一個交點,∴設拋物線解析式為y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故選:C.本題考查了拋物線與x軸的交點.解答該題的技巧性在于找到拋物線的頂點坐標,根據(jù)頂點坐標設拋物線的解析式.10、D【分析】根據(jù)拋物線的平移規(guī)律“上加下減,左加右減”求解即可.【詳解】解:將拋物線向左平移2個單位后所得到的拋物線為:.故選D.本題考查了拋物線的平移,屬于基礎知識,熟知拋物線的平移規(guī)律是解題的關鍵.二、填空題(每小題3分,共24分)11、.【解析】∵將△ABC繞點A逆時針旋轉的到△ADE,點C和點E是對應點,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案為:.12、(4,3)【解析】根據(jù)頂點式的坐標特點直接寫出頂點坐標.【詳解】解:∵y=5(x-4)2+3是拋物線解析式的頂點式,

∴頂點坐標為(4,3).

故答案為(4,3).此題考查二次函數(shù)的性質,掌握頂點式y(tǒng)=a(x-h)2+k中,頂點坐標是(h,k)是解決問題的關鍵.13、30°【分析】連接OC、CD,由切線的性質得出∠OCP=90°,由圓內接四邊形的性質得出∠ODC=180°?∠A=60°,由等腰三角形的性質得出∠OCD=∠ODC=60°,求出∠DOC=60°,由直角三角形的性質即可得出結果.【詳解】如圖所示:連接OC、CD,∵PC是⊙O的切線,∴PC⊥OC,∴∠OCP=90°,∵∠A=120°,∴∠ODC=180°?∠A=60°,∵OC=OD,∴∠OCD=∠ODC=60°,∴∠DOC=180°?2×60°=60°,∴∠P=90°?∠DOC=30°;故填:30°.本題考查了切線的性質、等腰三角形的性質、直角三角形的性質、三角形內角和定理;熟練掌握切線的性質是解題的關鍵.14、-22【分析】先確定的整數(shù)部分的規(guī)律,根據(jù)題意確定算式的運算規(guī)律,再進行實數(shù)運算.【詳解】解:觀察數(shù)據(jù)12=1,22=4,32=9,42=16,52=25,62=36的特征,得出數(shù)據(jù)1,2,3,4……2020中,算術平方根是1的有3個,算術平方根是2的有5個,算數(shù)平方根是3的有7個,算數(shù)平方根是4的有9個,…其中432=1849,442=1936,452=2025,所以在、中,算術平方根依次為1,2,3……43的個數(shù)分別為3,5,7,9……個,均為奇數(shù)個,最大算數(shù)平方根為44的有85個,所以=1-2+3-4+…+43-44=-22本題考查自定義運算,通過正整數(shù)的算術平方根的整數(shù)部分出現(xiàn)的規(guī)律,找到算式中相同加數(shù)的個數(shù)及符號的規(guī)律,方能進行運算.15、1或1【分析】過點P作PC⊥x軸于點C,連接PA,由垂徑定理得⊙P的半徑為2,因為將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,分兩種情況進行討論求值即可.由【詳解】解:過點P作PC⊥x軸于點C,連接PA,AB=,,點P的坐標為(1,-1),PC=1,,將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,①當沿著y軸的負方向平移,則根據(jù)切線定理得:PC=PA=2即可,因此平移的距離只需為1即可;②當沿著y軸正方向移動,由①可知平移的距離為3即可.故答案為1或1.本題主要考查圓的基本性質及切線定理,關鍵是根據(jù)垂徑定理得到圓的半徑,然后進行分類討論即可.16、1.【詳解】∵AB=5,AD=12,∴根據(jù)矩形的性質和勾股定理,得AC=13.∵BO為Rt△ABC斜邊上的中線∴BO=6.5∵O是AC的中點,M是AD的中點,∴OM是△ACD的中位線∴OM=2.5∴四邊形ABOM的周長為:6.5+2.5+6+5=1故答案為117、m【分析】根據(jù)余弦的定義計算,得到答案.【詳解】在Rt△ABC中,cosA=,∴AB=,故答案為:m.本題考查了三角函數(shù)的問題,掌握三角函數(shù)的定義以及應用是解題的關鍵.18、19.2m【分析】根據(jù)在同一時物體的高度和影長成正比,設出教學樓高度即可列方程解答.【詳解】設教學樓高度為xm,列方程得:解得x=19.2,故教學樓的高度為19.2m.故答案為:19.2m.本題考查了相似三角形的應用,解題時關鍵是找出相等的比例關系,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.三、解答題(共66分)19、(1);(2)見解析【分析】(1)連接OB、OC,得到,然后根據(jù)垂徑定理即可求解BC的長;(2)延長OD交圓于E點,連接AE,根據(jù)垂徑定理得到,即,AE即為所求.【詳解】(1)連接OB、OC,∴∵OD⊥BC∴BD=CD,且∵OB=4∴0D=2,BD=∴BC=故答案為;(2)如圖所示,延長OD交⊙O于點E,連接AE交BC于點M,AM即為所求根據(jù)垂徑定理得到,即,所以AE為的角平分線.本題考查了垂徑定理,同弧所對圓周角是圓心角的一半,熟練掌握圓部分的定理和相關性質是解決本題的關鍵.20、【解析】方程左邊分解因式后,利用兩數(shù)相乘積為1,兩因式中至少有一個為1轉化為兩個一元一次方程來求解.【詳解】分解因式得:(2x-3)(2x-1)=1,可得2x-3=1或2x-1=1,解得:x1=,x2=.此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.21、(1),(-1,4);(2),P(,)【解析】(1)根據(jù)題意將已知點的坐標代入已知的拋物線的解析式,利用待定系數(shù)法確定拋物線的解析式并寫出其頂點坐標即可;(2)根據(jù)題意設P點的坐標為(t,)(-3<t<0),并用分割法將四邊形的面積S四邊形BCPA=S△OBC+S△OAP+S△OPC,得到二次函數(shù)運用配方法求得最值即可.【詳解】解:(1)∵該拋物線過點C(0,3),∴可設該拋物線的解析式為,∵與x軸交于點A和點B(1,0),其對稱軸l為x=-1,∴∴∴此拋物線的解析式為,其頂點坐標為(-1,4);(2)如圖:可知A(-3,0),∴OA=3,OB=1,OC=3設P點的坐標為(t,)(-3<t<0)∴S四邊形BCPA=S△OBC+S△OAP+S△OPC=×OB×OC+×OA×yP+×xC×OC=×1×3+×3×()+×|t|×3===∴當t=時,四邊形PABC的面積有最大值∴P(,).本題考查二次函數(shù)綜合題.用待定系數(shù)法求函數(shù)的解析式時要靈活地根據(jù)已知條件選擇配方法和公式法,注意求拋物線的最值的方法是配方法.22、(1);(2);(3)當時,的值最大,最大值為9000元【分析】(1)根據(jù)待定系數(shù)法即可求出一次函數(shù)解析式;(2)根據(jù)題意列出二次函數(shù)即可求解;(3)根據(jù)二次函數(shù)的性質即可得到最大值.【詳解】(1)設與的函數(shù)關系式為y=kx+b把(15,550)、(20,500)代入得解得∴(2)∵成本為10元,故每件利潤為(x-10)∴銷售利潤(3)=∵-10<0,∴當時,的值最大,最大值為9000元.本題主要考查二次函數(shù)的應用,理解題意抓住相等關系函數(shù)解析式是解題的關鍵.23、證明見解析.【分析】由圓周角定理可得∠ADE=∠CBE,從而利用AAS可證明△ADE≌△CBE,繼而可得出結論.【詳解】證明:∵同弧所對的圓周角相等,在和中,本題考查了圓周角定理及全等三角形的判定與性質,解答本題的關鍵是由圓周角定理得出∠ADE=∠CBE.24、(1)40;(2)39000;(3)答案不唯一,詳見解析【分析】(1)用一月份A款的數(shù)量乘以,即可得出一月份B款運動鞋銷售量;(2)設A,B兩款運動鞋的銷量單價分別為x元,y元,根據(jù)圖形中給出的數(shù)據(jù),列出算式,再進行計算即可;(3)根據(jù)條形統(tǒng)計圖和折線統(tǒng)計圖所給出的數(shù)據(jù),提出合理的建議即可.【詳解】解:(1),一月份款運動鞋銷售了40雙.(2)設兩款運動鞋的銷售單價分別為元,則根據(jù)題意,得,解得三月份的總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論