北京師大附屬實驗中學2024年九上數(shù)學期末檢測模擬試題含解析_第1頁
北京師大附屬實驗中學2024年九上數(shù)學期末檢測模擬試題含解析_第2頁
北京師大附屬實驗中學2024年九上數(shù)學期末檢測模擬試題含解析_第3頁
北京師大附屬實驗中學2024年九上數(shù)學期末檢測模擬試題含解析_第4頁
北京師大附屬實驗中學2024年九上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,△ABC中,點D,E在邊AB,AC上,DE∥BC,△ADE與△ABC的周長比為2∶5,則AD∶DB為()A.2∶5 B.4∶25 C.2∶3 D.5∶22.已知、是一元二次方程的兩個實數(shù)根,則的值為()A.-1 B.0 C.1 D.23.在中,,,,則的值是()A. B. C. D.4.已知拋物線y=﹣x2+bx+4經(jīng)過(﹣2,﹣4),則b的值為()A.﹣2 B.﹣4 C.2 D.45.定義新運算:對于兩個不相等的實數(shù),,我們規(guī)定符號表示,中的較大值,如:.因此,;按照這個規(guī)定,若,則的值是()A.-1 B.-1或 C. D.1或6.-2019的相反數(shù)是()A.2019 B.-2019 C. D.7.已知,則的值是()A. B. C. D.8.一個不透明的布袋里裝有8個只有顏色不同的球,其中2個紅球,6個白球.從布袋里任意摸出1個球,則摸出的球是白球的概率為()A. B. C. D.9.下列函數(shù)是關于的反比例函數(shù)的是()A. B. C. D.10.定義:如果一個一元二次方程的兩個實數(shù)根的比值與另一個一元二次方程的兩個實數(shù)根的比值相等,我們稱這兩個方程為“相似方程”,例如,的實數(shù)根是3或6,的實數(shù)根是1或2,,則一元二次方程與為相似方程.下列各組方程不是相似方程的是()A.與 B.與C.與 D.與二、填空題(每小題3分,共24分)11.甲、乙兩同學近期6次數(shù)學單元測試成績的平均分相同,甲同學成績的方差S甲2=6.5分2,乙同學成績的方差S乙2=3.1分2,則他們的數(shù)學測試成績較穩(wěn)定的是____(填“甲”或“乙”).12.如圖,為正五邊形的一條對角線,則∠=_____________.13.可樂和奶茶含有大量的咖啡因,世界衛(wèi)生組織建議青少年每天攝入的咖啡因不能超過0.000085kg,將數(shù)據(jù)0.000085用科學記數(shù)法表示為____.14.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.15.計算:×=______.16.方程x2=1的解是_____.17.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.18.將三角形紙片(△ABC)按如圖所示的方式折疊,使點B落在邊AC上,記為點B′,折痕為EF.已知AB=AC=3,BC=4,若以點B′,F(xiàn),C為頂點的三角形與△ABC相似,則BF的長度是_________.三、解答題(共66分)19.(10分)已知二次函數(shù)的頂點坐標為,且其圖象經(jīng)過點,求此二次函數(shù)的解析式.20.(6分)(1)計算:;(2)解分式方程:;(3)解不等式組:.21.(6分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,3),B(2,5),C(4,2)(每個方格的邊長均為1個單位長度)(1)將△ABC平移,使點A移動到點A1,請畫出△A1B1C1;(2)作出△ABC關于O點成中心對稱的△A2B2C2,并直接寫出A2,B2,C2的坐標;(3)△A1B1C1與△A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標;若不是,請說明理由.22.(8分)我們定義:如果圓的兩條弦互相垂直,那么這兩條弦互為“十字弦”,也把其中的一條弦叫做另一條弦的“十字弦”.如:如圖,已知的兩條弦,則、互為“十字弦”,是的“十字弦”,也是的“十字弦”.(1)若的半徑為5,一條弦,則弦的“十字弦”的最大值為______,最小值為______.(2)如圖1,若的弦恰好是的直徑,弦與相交于,連接,若,,,求證:、互為“十字弦”;(3)如圖2,若的半徑為5,一條弦,弦是的“十字弦”,連接,若,求弦的長.23.(8分)(問題呈現(xiàn))阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=DB+BA.下面是運用“截長法”證明CD=DB+BA的部分證明過程.證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.∵M是的中點,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根據(jù)證明過程,分別寫出下列步驟的理由:①,②,③;(理解運用)如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點M是的中點,MD⊥BC于點D,則BD=;(變式探究)如圖3,若點M是的中點,(問題呈現(xiàn))中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數(shù)量關系?并加以證明.(實踐應用)根據(jù)你對阿基米德折弦定理的理解完成下列問題:如圖4,BC是⊙O的直徑,點A圓上一定點,點D圓上一動點,且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,求AD長.24.(8分)閱讀材料:小胖同學遇到這樣一個問題,如圖1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的長;小胖經(jīng)過思考后,在CD上取點F使得∠DEF=∠ADB(如圖2),進而得到∠EFD=45°,試圖構建“一線三等角”圖形解決問題,于是他繼續(xù)分析,又意外發(fā)現(xiàn)△CEF∽△CDE.(1)請按照小胖的思路完成這個題目的解答過程.(2)參考小胖的解題思路解決下面的問題:如圖3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.25.(10分)為了樹立文明鄉(xiāng)風,推進社會主義新農(nóng)村建設,某村決定組建村民文體團隊,現(xiàn)圍繞“你最喜歡的文體活動項目(每人僅限一項)”,在全村范圍內(nèi)隨機抽取部村民進行問卷調(diào)查,并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:(1)請將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù);(3)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個項目中任選兩項組隊參加端午節(jié)慶典活動,請用列表法或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個項目的概率.26.(10分)已知關于的方程.(1)求證:不論取何實數(shù),該方程都有兩個不相等的實數(shù)根;(2)若該方程的一個根為,求該方程的另一個根.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】由題意易得,根據(jù)兩個相似三角形的周長比等于相似比可直接得解.【詳解】,,△ADE與△ABC的周長比為2∶5,,.故選C.本題主要考查相似三角形的性質,關鍵是根據(jù)兩個三角形相似,那么它們的周長比等于相似比.2、C【分析】根據(jù)根與系數(shù)的關系即可求出的值.【詳解】解:∵、是一元二次方程的兩個實數(shù)根∴故選C.此題考查的是根與系數(shù)的關系,掌握一元二次方程的兩根之和=是解決此題的關鍵.3、A【分析】根據(jù)正弦函數(shù)是對邊比斜邊,可得答案.【詳解】解:sinA==.故選A.本題考查了銳角正弦函數(shù)的定義.4、C【分析】將點的坐標代入拋物線的解析式求解即可.【詳解】因為拋物線y=﹣x1+bx+4經(jīng)過(﹣1,﹣4),所以﹣4=﹣(﹣1)1﹣1b+4,解得:b=1.故選:C.本題主要考查的是二次函數(shù)的性質.解題的關鍵是掌握二次函數(shù)的性質,明確拋物線經(jīng)過的點的坐標滿足拋物線的解析式是解題的關鍵.5、B【分析】分x>0和0x<0兩種情況分析,利用公式法解一元二次方程即可.【詳解】解:當x>0時,有,解得,(舍去),

x<0時,有,解得,x1=?1,x2=2(舍去).故選B.此題主要考查了一元二次方程的解法,解題的關鍵是掌握新定義以及掌握因式分解法以及公式法解方程的方法步驟,掌握降次的方法,把二次化為一次,再解一元一次方程.6、A【分析】根據(jù)只有符號不同的兩個數(shù)是互為相反數(shù)解答即可.【詳解】解:-1的相反數(shù)是1.故選A.本題考查了相反數(shù)的定義,解答本題的關鍵是熟練掌握相反數(shù)的定義,正數(shù)的相反數(shù)是負數(shù),0的相反數(shù)是0,負數(shù)的相反數(shù)是正數(shù).7、A【解析】設a=k,b=2k,則.故選A.8、A【解析】用白球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共有8個球,白球有6個,所以從布袋里任意摸出1個球,摸到白球的概率為,故選:A.本題考查了概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.9、B【分析】根據(jù)反比例函數(shù)的定義進行判斷.【詳解】A.,是一次函數(shù),此選項錯誤;B.,是反比例函數(shù),此選項正確;C.,是二次函數(shù),此選項錯誤;D.,是y關于(x+1)的反比例函數(shù),此選項錯誤.故選:B本題考查了反比例函數(shù)的定義,解題的關鍵是掌握反比例函數(shù)的定義.10、C【分析】根據(jù)“相似方程”的定義逐項分析即可.【詳解】A.∵,∴.∴x1=4,x2=-4,∵,∴x1=5,x2=-5.∵4:(-4)=5:(5),∴與是相似方程,故不符合題意;B.∵,∴x1=x2=6.∵,∴(x+2)2=0,∴x1=x2=-2.∵6:6=(-2):(-2),∴與是相似方程,故不符合題意;C.∵,∴,∴x1=0,x2=7.∵,∴,∴(x-2)(x+3)=0,∴x1=2,x2=-3.∵0:7≠2:(-3),∴與不是相似方程,符合題意;D.∵,∴x1=-2,x2=-8.∵,∴(x-1)(x-4)=0,∴x1=1,x2=4.∵(-2):(-8)=1:4,∴與是相似方程,故不符合題意;故選C.本題考查了新定義運算,以及一元二次方程的解法,正確理解“相似方程”的定義是解答本題的關鍵.二、填空題(每小題3分,共24分)11、乙【分析】根據(jù)方差越小數(shù)據(jù)越穩(wěn)定即可求解.【詳解】解:因為甲、乙兩同學近期6次數(shù)學單元測試成績的平均分相同且S甲2>S乙2,所以乙的成績數(shù)學測試成績較穩(wěn)定.故答案為:乙.本題考查方差的性質,方差越小數(shù)據(jù)越穩(wěn)定.12、36°【解析】360°÷5=72°,180°-72°=108°,所以,正五邊形每個內(nèi)角的度數(shù)為108°,即可知∠A=108°,又知△ABE是等腰三角形,則∠ABE=(180°-108°)=36°.13、8.1×10-1【分析】絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.000081=8.1×10-1.故答案為:8.1×10-1.本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.14、2.【分析】把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為2.本題考查了求代數(shù)式的值和一元二次方程的解,解此題的關鍵是能求出2m2﹣3m=2.15、1.【解析】×==1,故答案為1.16、±1【解析】方程利用平方根定義開方求出解即可.【詳解】∵x2=1∴x=±1.本題考查直接開平方法解一元二次方程,解題關鍵是熟練掌握一元二次方程的解法.17、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.18、2或【分析】設BF=,根據(jù)折疊的性質用x表示出B′F和FC,然后分兩種情況進行討論(1)△B′FC∽△ABC和△B′FC∽△BAC,最后根據(jù)兩三角形相似對應邊成比例即可求解.【詳解】設BF=,則由折疊的性質可知:B′F=,F(xiàn)C=,(1)當△B′FC∽△ABC時,有,即:,解得:;(2)當△B′FC∽△BAC時,有,即:,解得:;綜上所述,可知:若以點B′,F(xiàn),C為頂點的三角形與△ABC相似,則BF的長度是2或故答案為2或.本題考查了三角形相似的判定和性質,解本題時,由于題目中沒有指明△B′FC和△ABC相似時頂點的對應關系,所以根據(jù)∠C是兩三角形的公共角可知,需分:(1)△B′FC∽△ABC;(2)△B′FC∽△BAC;兩種情況分別進行討論,不要忽略了其中任何一種.三、解答題(共66分)19、【分析】根據(jù)已知頂點坐標,利用待定系數(shù)法可設二次函數(shù)的解析式為,代入坐標求解即可求得二次函數(shù)的解析式.【詳解】解:因為二次函數(shù)的頂點坐標為,所以可設二次函數(shù)的解析式為:因為圖象經(jīng)過點(1,1),所以,解得,所以,所求二次函數(shù)的解析式為:.本題考查了用待定系數(shù)法求二次函數(shù)的解析式,一般設解析式為;當已知二次函數(shù)的頂點坐標時,可設解析式為;當已知二次函數(shù)圖象與x軸的兩個交點坐標時,可設解析式為.20、(1);(2);(3).【分析】(1)原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則,絕對值的代數(shù)意義,特殊角的三角函數(shù)值,以及二次根式性質計算即可求出值;(2)分式方程去分母轉化為整式方程,求出整式方程的解得到的值,經(jīng)檢驗即可得到分式方程的解;(3)分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集即可.【詳解】解:(1),,,.(2),去分母得:,解得:,經(jīng)檢驗是原方程的根.(3),解不等式①得,解不等式②得,∴原不等式組的解集為為:.此題考查了解分式方程,以及實數(shù)的運算、不等式組的解法,熟練掌握運算法則是解本題的關鍵.21、(1)見解析;(2)見解析,點A2,B2,C2的坐標分別為(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)是,對稱中心的坐標的坐標為(﹣2,﹣1).【分析】(1)利用點A和坐標的關系確定平移的方向與距離,關于利用此平移規(guī)律寫出B1、C1的坐標,然后描點即可;(2)利用關于點對稱的點的坐標特征寫出A2,B2,C2的坐標,然后描點即可;(3)連接A1A2,B1B2,C1C2,它們都經(jīng)過點P,從而可判斷△A1B1C1與△A2B2C2關于點P中心對稱,再寫出P點坐標即可.【詳解】解:(1)如圖,△A1B1C1為所作;(2)如圖,△A2B2C2為所作;點A2,B2,C2的坐標分別為(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1C1與△A2B2C2關于點P中心對稱,如圖,對稱中心的坐標的坐標為(﹣2,﹣1).本題考查作圖-旋轉變換:根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.22、(1)10,6;(2)見解析;(3).【分析】(1)根據(jù)“十字弦”定義可得弦的“十字弦”為直徑時最大,當CD過A點或B點時最??;(2)根據(jù)線段長度得出對應邊成比例且有夾角相等,證明△ACH∽△DCA,由其性質得出對應角相等,結合90°的圓周角證出AH⊥CD,根據(jù)“十字弦”定義可得;(3)過O作OE⊥AB于點E,作OF⊥CD于點F,利用垂徑定理得出OE=3,由正切函數(shù)得出AH=DH,設DH=x,在Rt△ODF中,利用線段和差將邊長用x表示,根據(jù)勾股定理列方程求解.【詳解】解:(1)當CD為直徑時,CD最大,此時CD=10,∴弦的“十字弦”的最大值為10;當CD過A點時,CD長最小,即AM的長度,過O點作ON⊥AM,垂足為N,作OG⊥AB,垂足為G,則四邊形AGON為矩形,∴AN=OG,∵OG⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON⊥AM,∴AM=6,即弦的“十字弦”的最小值是6.(2)證明:如圖,連接AD,∵,,,∴,∵∠C=∠C,∴△ACH∽△DCA,∴∠CAH=∠D,∵CD是直徑,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH⊥CD,∴、互為“十字弦”.(3)如圖,過O作OE⊥AB于點E,作OF⊥CD于點F,連接OA,OD,則四邊形OEHF是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan∠ADH=,∴tan60°=,設DH=,則AH=x,∴FD=3+x,OF=HE=4-x,在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,∴(3+x)2+(4-x)2=52,解得,x=,∴FD=,∵OF⊥CD,∴CD=2DF=即CD=本題考查圓的相關性質,利用垂徑定理,相似三角形等知識是解決圓問題的常用手段,對結合學過的知識和方法的基礎上,用新的方法和思路來解決新題型或新定義的能力是解答此題的關鍵.23、(問題呈現(xiàn))相等的弧所對的弦相等;同弧所對的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)1;(變式探究)DB=CD+BA;證明見解析;(實踐應用)1或.【分析】(問題呈現(xiàn))根據(jù)圓的性質即可求解;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(變式探究)證明△MAB≌△MGB(SAS),則MA=MG,MC=MG,又DM⊥BC,則DC=DG,即可求解;(實踐應用)已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.如圖∠D2AC=45°,同理易得AD2=.【詳解】(問題呈現(xiàn))①相等的弧所對的弦相等②同弧所對的圓周角相等③有兩組邊及其夾角分別對應相等的兩個三角形全等故答案為:相等的弧所對的弦相等;同弧所定義的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案為:1;(變式探究)DB=CD+BA.證明:在DB上截去BG=BA,連接MA、MB、MC、MG,∵M是弧AC的中點,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(實踐應用)如圖,BC是圓的直徑,所以∠BAC=90°.因為AB=6,圓的半徑為5,所以AC=2.已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如圖∠D2AC=45°,同理易得AD2=.所以AD的長為1或.本題考查全等三角形的判定(SAS)與性質、等腰三角形的性質和圓心角、弦、弧,解題的關鍵是掌握全等三角形的判定(SAS)與性質、等腰三角形的性質和圓心角、弦、弧.24、CD=5;(1)見解析;(2)【分析】(1)在CD上取點F,使∠DEF=∠ADB,證明△ADB∽△DEF,求出DF=4,證明△CEF∽△CDE,由比例線段可求出CF=1,則CD可求出;(2)如圖3,作∠DAT=∠BDE,作∠RAT=∠DAE,通過證明△DBE∽△ATD,可得,可得,通過證明△ARE≌△ATD,△ABR≌△ACT,可得BR=TC=DT,即可求解.【詳解】解:(1)在CD上取點F,使∠DEF=∠ADB,∵AD=AE,∠DAE=90°,∴DE=AD=AE,∵∠ABC=45°,∠ADE=45°,且∠ADC=∠ADE+∠EDC,∴∠BAD=∠EDC,∵∠BDA=∠DEF,∴△ADB∽△DEF,∴=,∵AB=2,∴DF=4,又∵∠CDE+∠C=45°,∴∠CEF=∠CDE,∴△CEF∽△CDE,∴,又∵DF=4,CE=,∴,∴CF=1或CF=5(舍去),∴CD=CF+4=5;(2)如圖3,作∠DAT=∠BDE,作∠RAT=∠DAE,∵∠ACB=∠DAC=∠ABC,∴AB=AC,AD=CD,∵AD=AE,∴∠AED=∠ADE,∵∠EAD+∠EBD=90°,∴∠EAD+2∠EBD=180°,且∠EAD+2∠AED=180°,∴∠EBD=∠AED=∠ADE,∵∠BDA=∠DAT+∠ATD=∠BDE+∠ADE,∴∠ADE=∠ATD=∠EBD,且∠BDE=∠DAT,∴△DBE∽△ATD,∴,∠ADT=∠BED

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論