版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.2.如圖,點A,B,C都在⊙O上,若∠C=35°,則∠AOB的度數(shù)為()A.35° B.55° C.145° D.70°3.近視眼鏡的度數(shù)y(度)與鏡片焦距x(m)成反比例,已知200度近視眼鏡鏡片的焦距為0.5m,則y與x的函數(shù)關(guān)系式為()A.y=100x B.y=C.y=200x D.y=4.如圖,,是四邊形的對角線,點,分別是,的中點,點,分別是,的中點,連接,,,,要使四邊形為正方形,則需添加的條件是()A., B.,C., D.,5.用相同的小立方塊搭成的幾何體的三種視圖都相同(如圖所示),則搭成該幾何體的小立方塊個數(shù)是()A.3個 B.4個 C.5個 D.6個6.如圖,在Rt△ABC中,∠C=90°,AC=3,AB=5,則cosB的值為()A. B. C. D.7.如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎(chǔ)上,進一步證明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分8.已知二次函數(shù)的圖象與軸的一個交點為(-1,0),對稱軸是直線,則圖象與軸的另一個交點是()A.(2,0) B.(-3,0) C.(-2,0) D.(3,0)9.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,則∠C的度數(shù)是()A.45° B.75° C.105° D.120°10.?dāng)z影興趣小組的學(xué)生,將自己拍攝的照片向本組其他成員各贈送一張,全組共互贈了182張,若全組有x名學(xué)生,則根據(jù)題意列出的方程是()A.x(x+1)=182 B.0.5x(x+1)=182C.0.5x(x-1)=182D.x(x-1)=18211.如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連結(jié)CD,過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結(jié)DF.給出以下四個結(jié)論:①;②點F是GE的中點;③;④,其中正確的結(jié)論個數(shù)是()A.4個 B.3個 C.2個 D.1個12.如圖,正方形ABCD的邊長為4,點P、Q分別是CD、AD的中點,動點E從點A向點B運動,到點B時停止運動;同時,動點F從點P出發(fā),沿P→D→Q運動,點E、F的運動速度相同.設(shè)點E的運動路程為x,△AEF的面積為y,能大致刻畫y與x的函數(shù)關(guān)系的圖象是()A. B. C. D.二、填空題(每題4分,共24分)13.已知實數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡=_____.14.一圓錐的側(cè)面展開后是扇形,該扇形的圓心角為120°,半徑為6cm,則此圓錐的底面圓的半徑為cm.15.方程的根為_____.16.如圖,在中,,是三角形的角平分線,如果,,那么點到直線的距離等于___________.17.已知點和關(guān)于原點對稱,則a+b=____.18.將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線,若直線y=x+b與這兩條拋物線共有3個公共點,則b的取值范圍為_____.三、解答題(共78分)19.(8分)如圖,直線l的解析式為y=x,反比例函數(shù)y=(x>0)的圖象與l交于點N,且點N的橫坐標(biāo)為1.(1)求k的值;(2)點A、點B分別是直線l、x軸上的兩點,且OA=OB=10,線段AB與反比例函數(shù)圖象交于點M,連接OM,求△BOM的面積.20.(8分)如圖,是的直徑,弦于點,是上一點,,的延長線交于點.(1)求證:.(2)當(dāng)平分,,,求弦的長.21.(8分)國家教育部提出“每天鍛煉一小時,健康工作五十年,幸福生活一輩子”.萬州區(qū)某中學(xué)對九年級部分學(xué)生進行問卷調(diào)查“你最喜歡的鍛煉項目是什么?”,規(guī)定從“打球”,“跑步”,“游泳”,“跳繩”,“其他”五個選項中選擇自己最喜歡的項目,且只能選擇一個項目,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.最喜歡的鍛煉項目人數(shù)打球120跑步游泳跳繩30其他(1)這次問卷調(diào)查的學(xué)生總?cè)藬?shù)為,人數(shù);(2)扇形統(tǒng)計圖中,,“其他”對應(yīng)的扇形的圓心角的度數(shù)為度;(3)若該年級有1200名學(xué)生,估計喜歡“跳繩”項目的學(xué)生大約有多少人?22.(10分)如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點F.(1)求證:△ACD∽△BFD;(2)當(dāng)tan∠ABD=1,AC=3時,求BF的長.23.(10分)國務(wù)院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識競賽,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:(1)獲得一等獎的學(xué)生人數(shù);(2)在本次知識競賽活動中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.24.(10分)數(shù)學(xué)不僅是一門學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時候,在某個王國里有一位聰明的大臣,他發(fā)明了國際象棋,獻給了國王,國王從此迷上了下棋,為了對聰明的大臣表示感謝,國王答應(yīng)滿足這位大臣的一個要求.大臣說:“就在這個棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要這么一點米粒?”國王哈哈大笑.大臣說:“就怕您的國庫里沒有這么多米!”國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請同學(xué)們閱讀以下解答過程就知道答案了.設(shè),則即:事實上,按照這位大臣的要求,放滿一個棋盤上的個格子需要粒米.那么到底多大呢?借助計算機中的計算器進行計算,可知答案是一個位數(shù):,這是一個非常大的數(shù),所以國王是不能滿足大臣的要求.請用你學(xué)到的方法解決以下問題:我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?計算:某中學(xué)“數(shù)學(xué)社團”開發(fā)了一款應(yīng)用軟件,推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知一列數(shù):,其中第一項是,接下來的兩項是,再接下來的三項是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項和為的正整數(shù)冪.請直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.25.(12分)已知:△ABC內(nèi)接于⊙O,過點A作直線EF.(1)如圖甲,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(寫出兩種情況,不需要證明):①或②;(2)如圖乙,AB是非直徑的弦,若∠CAF=∠B,求證:EF是⊙O的切線.(3)如圖乙,若EF是⊙O的切線,CA平分∠BAF,求證:OC⊥AB.26.如圖,AB是半圓O的直徑,C為半圓弧上一點,在AC上取一點D,使BC=CD,連結(jié)BD并延長交⊙O于E,連結(jié)AE,OE交AC于F.(1)求證:△AED是等腰直角三角形;(2)如圖1,已知⊙O的半徑為.①求的長;②若D為EB中點,求BC的長.(3)如圖2,若AF:FD=7:3,且BC=4,求⊙O的半徑.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故本選項不合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不合題意;C、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項符合題意;故選:D.本題主要考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后和原來的圖形重合.2、D【解析】∵∠C=35°,∴∠AOB=2∠C=70°.故選D.3、A【解析】由于近視鏡度數(shù)y(度)與鏡片焦距x(米)之間成反比例關(guān)系可設(shè)y=kx,由200度近視鏡的鏡片焦距是0.5米先求得k【詳解】由題意,設(shè)y=kx由于點(0.5,200)適合這個函數(shù)解析式,則k=0.5×200=100,∴y=100x故眼鏡度數(shù)y與鏡片焦距x之間的函數(shù)關(guān)系式為y=100x故選:A.本題考查根據(jù)實際問題列反比例函數(shù)關(guān)系式,解答該類問題的關(guān)鍵是確定兩個變量之間的函數(shù)關(guān)系,然后利用待定系數(shù)法求出它們的關(guān)系式.4、A【分析】證出、、、分別是、、、的中位線,得出,,,,證出四邊形為平行四邊形,當(dāng)時,,得出平行四邊形是菱形;當(dāng)時,,即,即可得出菱形是正方形.【詳解】點,分別是,的中點,點,分別是,的中點,、、、分別是、、、的中位線,,,,,四邊形為平行四邊形,當(dāng)時,,平行四邊形是菱形;當(dāng)時,,即,菱形是正方形;故選:.本題考查了正方形的判定、平行四邊形的判定、菱形的判定以及三角形中位線定理;熟練掌握三角形中位線定理是解題的關(guān)鍵.5、B【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】依題意可得所以需要4塊;故選:B考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.6、B【詳解】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC===1.cosB==,故選B.本題考查銳角三角函數(shù)的定義.7、B【解析】解:A.根據(jù)有一組鄰邊相等的平行四邊形是菱形,或者對角線互相垂直的平行四邊形是菱形,所以不能判斷平行四邊形ABCD是正方形;B.根據(jù)鄰邊相等的平行四邊形是菱形,對角線相等的平行四邊形為矩形,所以能判斷四邊形ABCD是正方形;C.根據(jù)一組鄰角相等的平行四邊形是矩形,對角線相等的平行四邊形也是矩形,即只能證明四邊形ABCD是矩形,不能判斷四邊形ABCD是正方形;D.根據(jù)對角線互相垂直的平行四邊形是菱形,對角線互相平分的四邊形是平行四邊形,所以不能判斷四邊形ABCD是正方形.故選B.8、D【分析】求出點(-1,0)關(guān)于直線的對稱點,對稱點的坐標(biāo)即為圖象與軸的另一個交點坐標(biāo).【詳解】由題意得,另一個交點與交點(-1,0)關(guān)于直線對稱設(shè)另一個交點坐標(biāo)為(x,0)則有解得另一個交點坐標(biāo)為(3,0)故答案為:D.本題考查了二次函數(shù)的對稱問題,掌握軸對稱圖象的性質(zhì)是解題的關(guān)鍵.9、C【解析】根據(jù)非負數(shù)的性質(zhì)列出關(guān)系式,根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),根據(jù)三角形內(nèi)角和定理計算即可.【詳解】由題意得,sinA-=0,-cosB=0,即sinA=,=cosB,解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故選C.本題考查的是非負數(shù)的性質(zhì)的應(yīng)用、特殊角的三角函數(shù)值的計算和三角形內(nèi)角和定理的應(yīng)用,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.10、D【解析】共送出照片數(shù)=共有人數(shù)×每人需送出的照片數(shù).根據(jù)題意列出的方程是x(x-1)=1.故選D.11、C【分析】易得AG∥BC,進而可得△AFG∽△CFB,然后根據(jù)相似三角形的性質(zhì)以及BA=BC即可判斷①;根據(jù)余角的性質(zhì)可得∠ABG=∠BCD,然后利用“角邊角”可證明△ABG≌△BCD,可得AG=BD,于是有AG=BC,由①根據(jù)相似三角形的性質(zhì)可得,進而可得FG=FB,然后根據(jù)FE≠BE即可判斷②;根據(jù)相似三角形的性質(zhì)可得,再根據(jù)等腰直角三角形的性質(zhì)可得AC=AB,然后整理即可判斷③;過點F作FM⊥AB于M,如圖,根據(jù)相似三角形的性質(zhì)和三角形的面積整理即可判斷④.【詳解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正確;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵點D是AB的中點,∴BD=AB,∴AG=BC,∵△AFG∽△CFB,∴,∴FG=FB,∵FE≠BE,∴點F是GE的中點不成立,故②錯誤;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴,故③正確;過點F作FM⊥AB于M,如圖,則FM∥CB,∴△AFM∽△ACB,∴,∵,∴,故④錯誤.綜上所述,正確的結(jié)論有①③共2個.故選:C.本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)和等腰直角三角形的性質(zhì)等知識,屬于??碱}型,熟練掌握全等三角形和相似三角形的判定和性質(zhì)是解題的關(guān)鍵.12、A【詳解】當(dāng)F在PD上運動時,△AEF的面積為y=AE?AD=2x(0≤x≤2),當(dāng)F在DQ上運動時,△AEF的面積為y=AE?AF==(2<x≤4),圖象為:故選A.二、填空題(每題4分,共24分)13、﹣a+b【分析】根據(jù)數(shù)軸判斷出a、b、c的正負情況以及絕對值的大小,然后根據(jù)絕對值和二次根式的性質(zhì)去掉根號和絕對值號,再進行計算即可得解.【詳解】解:由圖可知:a<b<0<c,而且,
∴a+c<0,b+c<0,
∴,
故答案為:.本題考查了二次根式的性質(zhì)與化簡,絕對值的性質(zhì),根據(jù)數(shù)軸判斷出a、b、c的情況是解題的關(guān)鍵.14、1.【解析】試題分析:設(shè)此圓錐的底面半徑為r,根據(jù)圓錐的側(cè)面展開圖扇形的弧長等于圓錐底面周長可得,1πr=,解得:r=1cm.故答案是1.考點:圓錐的計算.15、x=3【分析】方程兩邊同時乘以,變?yōu)檎椒匠?,然后解方程,最后檢驗,即可得到答案.【詳解】解:,∴方程兩邊同時乘以,得:,解得:,經(jīng)檢驗:是原分式方程的根,∴方程的根為:.故答案為:.本題考查了解分式方程,解題的關(guān)鍵是熟練掌握解分式方程的步驟,注意要檢驗.16、1【分析】作DE⊥AB于E,如圖,利用勾股定理計算出BC=5,再根據(jù)角平分線的性質(zhì)得DC=DE,然后利用面積法得到×5,從而可求出DE.【詳解】作DE⊥AB于E,如圖,
在Rt△ABC中,BC==5,
∵AD是三角形的角平分線,
∴DC=DE,
∵S△ACD+S△ABD=S△ABC,
∴×5,
∴DE=1,
即點D到直線AB的距離等于1.
故答案為1.此題考查角平分線的性質(zhì),解題關(guān)鍵在于掌握角的平分線上的點到角的兩邊的距離相等.17、【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點:兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反可得a-1+2=0,b-1+1=0,再解方程即可求得a、b的值,再代入計算即可.【詳解】∵點和關(guān)于原點對稱,∴a-1+2=0,b-1+1=0,∴a=-1,b=0,∴a+b=-1.故答案是:-1.考查了關(guān)于原點對稱的點的坐標(biāo)特點,解題關(guān)鍵是運用了兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反.18、0<b<【分析】畫出圖象,利用圖象法解決即可.【詳解】解:將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線為y=﹣x2+4x(0≤x≤4)畫出函數(shù)如圖,由圖象可知,當(dāng)直線y=x+b經(jīng)過原點時有兩個公共點,此時b=0,解,整理得x2﹣3x+b=0,若直線y=x+b與這兩條拋物線共有3個公共點,則△=9﹣4b>0,解得所以,當(dāng)0<b<時,直線y=x+b與這兩條拋物線共有3個公共點,故答案為.本題考查了二次函數(shù)圖像的折疊問題,解決本題的關(guān)鍵是能夠根據(jù)題意畫出二次函數(shù)折疊后的圖像,掌握二次函數(shù)與一元二次方程的關(guān)系.三、解答題(共78分)19、(1)27;(2)2【分析】(1)把x=1代入y=x,求得N的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得k的值;(2)根據(jù)勾股定理求得A的坐標(biāo),然后利用待定系數(shù)法求得直線AB的解析式,再和反比例函數(shù)的解析式聯(lián)立,求得M的坐標(biāo),然后根據(jù)三角形面積公式即可求得△BOM的面積.【詳解】解:(1)∵直線l經(jīng)過N點,點N的橫坐標(biāo)為1,∴y=×1=,∴N(1,),∵點N在反比例函數(shù)y=(x>0)的圖象上,∴k=1×=27;(2)∵點A在直線l上,∴設(shè)A(m,m),∵OA=10,∴m2+(m)2=102,解得m=8,∴A(8,1),∵OA=OB=10,∴B(10,0),設(shè)直線AB的解析式為y=ax+b,∴,解得,∴直線AB的解析式為y=﹣3x+30,解得或,∴M(9,3),∴△BOM的面積==2.本題考查了反比例函數(shù)與一次函數(shù)的交點,一次函數(shù)圖象上點的坐標(biāo)特征,待定系數(shù)法求反比例函數(shù)的解析式和一次函數(shù)的解析式,求得、點的坐標(biāo)是解題的關(guān)鍵.20、(1)證明見解析;(2)2【分析】(1)根據(jù)垂徑定理可得,即,再根據(jù)圓內(nèi)接四邊形的性質(zhì)即可得證;(2)連接OG,BG,OD,根據(jù)等腰直角三角形的性質(zhì)可得,利用垂徑定理和解直角三角形可得,在中應(yīng)用勾股定理即可求解.【詳解】解:(1)弦,,,四邊形是圓內(nèi)接四邊形,,;(2)連接OG,BG,OD,,∵,∴,∵,∴,∵,∴,在中,,,∴,∵平分,,∴,∵AB是直徑,∴,∴,∴,∴,在中,,即,解得或(舍),∴.本題考查垂徑定理、圓內(nèi)接四邊形的性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)、解直角三角形等內(nèi)容,作出輔助線是解題的關(guān)鍵.21、(1)300,90;(2)10,18;(3)120人【分析】(1)根據(jù)打球人數(shù)占總?cè)藬?shù)的40%可求出總?cè)藬?shù),再根據(jù)比例關(guān)系求出游泳人數(shù),再用總?cè)藬?shù)減去打球、游泳、跳繩的人數(shù)即為的值;(2)用跳繩人數(shù)除以總?cè)藬?shù),得到n%的值,即可求出n,求出其他所占比例,再乘以360°即可得到圓心角度數(shù);(3)用1200人乘以跳繩所占比例即可得出答案.【詳解】解:(1)總?cè)藬?shù)=(人)游泳人數(shù)(人)∴(人)故答案為:300,90;(2)n%=∴n=10,∴m%=1-40%-25%-20%-10%=5%∴“其他”對應(yīng)的扇形的圓心角的度數(shù)為360°×5%=18°故答案為:10,18;(3)由于在調(diào)查的300名學(xué)生中,喜歡“跳繩”項目的學(xué)生有30名,所占的比例為.所以該年級1200名學(xué)生中估計喜歡“跳繩”項目的有人.本題考查統(tǒng)計圖,解題的關(guān)鍵是找到表格數(shù)據(jù)與扇形圖中數(shù)據(jù)的對應(yīng)關(guān)系.22、(1)見解析;(2)3【分析】(1)只要證明∠DBF=∠DAC,即可判斷.(2)利用相似三角形的性質(zhì)即可解決問題.【詳解】(1)證明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴,∴BF=AC=3本題考查相似三角形的性質(zhì)和判定,同角的余角相等,直角三角形兩銳角互余等知識,解題的關(guān)鍵是正確尋找相似三角形,利用新三角形的性質(zhì)解決問題23、(1)30人;(2).【解析】試題分析:(1)先由三等獎求出總?cè)藬?shù),再求出一等獎人數(shù)所占的比例,即可得到獲得一等獎的學(xué)生人數(shù);(2)用列表法求出概率.試題解析:(1)由圖可知三等獎?wù)伎偟?5%,總?cè)藬?shù)為人,一等獎?wù)?,所以,一等獎的學(xué)生為人;(2)列表:從表中我們可以看到總的有12種情況,而AB分到一組的情況有2種,故總的情況為.考點:1.扇形統(tǒng)計圖;2.列表法與樹狀圖法.24、(1)3;(2);(3)【分析】設(shè)塔的頂層共有盞燈,根據(jù)題意列出方程,進行解答即可.參照題目中的解題方法進行計算即可.由題意求得數(shù)列的每一項,及前n項和Sn=2n+1-2-n,及項數(shù),由題意可知:2n+1為2的整數(shù)冪.只需將-2-n消去即可,分別分別即可求得N的值【詳解】設(shè)塔的頂層共有盞燈,由題意得.解得,頂層共有盞燈.設(shè),,即:.即由題意可知:20第一項,20,21第二項,20,21,22第三項,…20,21,22…,2n?1第n項,根據(jù)等比數(shù)列前n項和公式,求得每項和分別為:每項含有的項數(shù)為:1,2,3,…,n,總共的項數(shù)為所有項數(shù)的和為由題意可知:為2的整數(shù)冪,只需將?2?n消去即可,則①1+2+(?2?n)=0,解得:n=1,總共有,不滿足N>10,②1+2+4+(?2?n)=0,解得:n=5,總共有滿足,③1+2+4+8+(?2?n)=0,解得:n=13,總共有滿足,④1+2+4+8+16+(?2?n)=0,解得:n=29,總共有不滿足,∴考查歸納推理,讀懂題目中等比數(shù)列的求和方法是解題的關(guān)鍵.25、(1)①OA⊥EF;②∠FAC=∠B;(2)見解析;(3)見解析.【分析】(1)添加條件是:①OA⊥EF或∠FAC=∠B根據(jù)切線的判定和圓周角定理推出即可.(2)作直徑AM,連接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根據(jù)切線的判定推出即可.(3)由同圓的半徑相等得到OA=OB,所以點O在AB的垂直平分線上,根據(jù)∠FAC=∠B,∠BAC=∠FAC,等量代換得到∠BAC=∠B,所以點C在AB的垂直平分線上,得到OC垂直平分AB.【詳解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半徑,∴EF是⊙O切線,②∵AB是⊙0直徑,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半徑,∴EF是⊙O切線,故答案為:OA⊥EF或∠FAC=∠B,(2)作直徑AM,連接CM,即∠B=∠M(在同圓或等圓中,同弧所對的圓周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直徑,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半徑,∴EF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 意識障礙患者的護理與安全防護-1
- 班組長安全生產(chǎn)職責(zé)課件
- 2025年橋梁沉降監(jiān)測養(yǎng)護協(xié)議
- 2025年企業(yè)微信營銷策劃合同協(xié)議
- 職業(yè)發(fā)展與就業(yè)指導(dǎo)(第2版)課件 專題五單元三 提升職業(yè)素養(yǎng)
- 快消品公司市場推廣經(jīng)理銷售支持績效評定表
- 并購與收購課件
- 國家智慧教育云平臺用戶反饋數(shù)據(jù)分析與平臺功能改進研究教學(xué)研究課題報告
- 企業(yè)資料分類標(biāo)準(zhǔn)化命名模板
- 小魚的心里話小學(xué)作文13篇
- 鄉(xiāng)鎮(zhèn)綜治維穩(wěn)課件
- 中國融通集團2025屆秋季校園招聘筆試歷年參考題庫附帶答案詳解
- GB/T 46725-2025協(xié)同降碳績效評價城鎮(zhèn)污水處理
- 2025家用美容儀行業(yè)簡析報告
- 2025年中小學(xué)教育政策與法規(guī)考試試卷及答案
- 2025上海市崇明區(qū)疾病預(yù)防控制中心(區(qū)衛(wèi)生健康監(jiān)督所)后勤保障崗位招聘3人筆試考試參考題庫及答案解析
- 婦產(chǎn)科學(xué)產(chǎn)褥期并發(fā)癥教案
- 機動車駕駛員考試《科目四》試卷及答案(2025年)
- 醫(yī)療器械經(jīng)營
- 貴州省貴陽市2026屆高三上學(xué)期11月質(zhì)量監(jiān)測(期中)物理試卷(含解析)
- 2025年中國農(nóng)業(yè)無人機行業(yè)發(fā)展研究報告
評論
0/150
提交評論