廣西河池市市級(jí)名校2026屆中考五模數(shù)學(xué)試題含解析_第1頁(yè)
廣西河池市市級(jí)名校2026屆中考五模數(shù)學(xué)試題含解析_第2頁(yè)
廣西河池市市級(jí)名校2026屆中考五模數(shù)學(xué)試題含解析_第3頁(yè)
廣西河池市市級(jí)名校2026屆中考五模數(shù)學(xué)試題含解析_第4頁(yè)
廣西河池市市級(jí)名校2026屆中考五模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西河池市市級(jí)名校2026屆中考五模數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.甲、乙兩名同學(xué)進(jìn)行跳高測(cè)試,每人10次跳高的平均成績(jī)恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無法確定2.計(jì)算-3-1的結(jié)果是()A.2B.-2C.4D.-43.已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>34.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.5.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數(shù)為()A.80° B.70° C.60° D.50°6.7的相反數(shù)是()A.7 B.-7 C. D.-7.如圖,⊙O的直徑AB=2,C是弧AB的中點(diǎn),AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.8.如圖,AB與⊙O相切于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長(zhǎng)是()A. B. C. D.9.如圖,直線AB∥CD,則下列結(jié)論正確的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°10.下列圖案中,是軸對(duì)稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.將數(shù)軸按如圖所示從某一點(diǎn)開始折出一個(gè)等邊三角形ABC,設(shè)點(diǎn)A表示的數(shù)為x﹣3,點(diǎn)B表示的數(shù)為2x+1,點(diǎn)C表示的數(shù)為﹣4,若將△ABC向右滾動(dòng),則x的值等于_____,數(shù)字2012對(duì)應(yīng)的點(diǎn)將與△ABC的頂點(diǎn)_____重合.12.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.13.已知拋物線y=x2﹣x+3與y軸相交于點(diǎn)M,其頂點(diǎn)為N,平移該拋物線,使點(diǎn)M平移后的對(duì)應(yīng)點(diǎn)M′與點(diǎn)N重合,則平移后的拋物線的解析式為_____.14.若分式的值為正數(shù),則x的取值范圍_____.15.如圖,在平行四邊形紙片上做隨機(jī)扎針實(shí)驗(yàn),則針頭扎在陰影區(qū)域的概率為__________.16.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對(duì)角線AC為邊,按逆時(shí)針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對(duì)角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn-1的面積為________________.17.一機(jī)器人以0.2m/s的速度在平地上按下圖中的步驟行走,那么該機(jī)器人從開始到停止所需時(shí)間為__s.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)C在x軸上,點(diǎn)C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個(gè)動(dòng)點(diǎn)D、E、F(不考慮與A、B、C重合),點(diǎn)D從A向B運(yùn)動(dòng),點(diǎn)E從B向C運(yùn)動(dòng),點(diǎn)F從C向A運(yùn)動(dòng),三點(diǎn)同時(shí)運(yùn)動(dòng),到終點(diǎn)結(jié)束,且速度均為1cm/s,設(shè)運(yùn)動(dòng)的時(shí)間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點(diǎn)E作EQ∥AB,交AC于點(diǎn)Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時(shí)△AEQ的面積最大?求出這個(gè)最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時(shí),平面內(nèi)是否存在一點(diǎn)P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請(qǐng)直接寫出P坐標(biāo),若不存在請(qǐng)說明理由?19.(5分)三輛汽車經(jīng)過某收費(fèi)站下高速時(shí),在2個(gè)收費(fèi)通道A,B中,可隨機(jī)選擇其中的一個(gè)通過.(1)三輛汽車經(jīng)過此收費(fèi)站時(shí),都選擇A通道通過的概率是;(2)求三輛汽車經(jīng)過此收費(fèi)站時(shí),至少有兩輛汽車選擇B通道通過的概率.20.(8分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長(zhǎng)為;(2)D是OA上一點(diǎn),以BD為直徑作⊙M,⊙M交AB于點(diǎn)Q.當(dāng)⊙M與y軸相切時(shí),sin∠BOQ=;(3)如圖2,動(dòng)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,從點(diǎn)O沿線段OA向點(diǎn)A運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)D以相同的速度,從點(diǎn)B沿折線B﹣C﹣O向點(diǎn)O運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)P作直線PE∥OC,與折線O﹣B﹣A交于點(diǎn)E.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).求當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時(shí)點(diǎn)E的坐標(biāo).21.(10分)下面是“作三角形一邊上的高”的尺規(guī)作圖過程.已知:△ABC.求作:△ABC的邊BC上的高AD.作法:如圖2,(1)分別以點(diǎn)B和點(diǎn)C為圓心,BA,CA為半徑作弧,兩弧相交于點(diǎn)E;(2)作直線AE交BC邊于點(diǎn)D.所以線段AD就是所求作的高.請(qǐng)回答:該尺規(guī)作圖的依據(jù)是______.22.(10分)如圖,拋物線y=﹣x2+5x+n經(jīng)過點(diǎn)A(1,0),與y軸交于點(diǎn)B.(1)求拋物線的解析式;(2)P是y軸正半軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求P點(diǎn)坐標(biāo).23.(12分)如圖,在△ABC中,∠ACB=90°,點(diǎn)D是AB上一點(diǎn),以BD為直徑的⊙O和AB相切于點(diǎn)P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長(zhǎng).24.(14分)某校九年級(jí)數(shù)學(xué)測(cè)試后,為了解學(xué)生學(xué)習(xí)情況,隨機(jī)抽取了九年級(jí)部分學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),得到相關(guān)的統(tǒng)計(jì)圖表如下.成績(jī)/分120﹣111110﹣101100﹣9190以下成績(jī)等級(jí)ABCD請(qǐng)根據(jù)以上信息解答下列問題:(1)這次統(tǒng)計(jì)共抽取了名學(xué)生的數(shù)學(xué)成績(jī),補(bǔ)全頻數(shù)分布直方圖;(2)若該校九年級(jí)有1000名學(xué)生,請(qǐng)據(jù)此估計(jì)該校九年級(jí)此次數(shù)學(xué)成績(jī)?cè)贐等級(jí)以上(含B等級(jí))的學(xué)生有多少人?(3)根據(jù)學(xué)習(xí)中存在的問題,通過一段時(shí)間的針對(duì)性復(fù)習(xí)與訓(xùn)練,若A等級(jí)學(xué)生數(shù)可提高40%,B等級(jí)學(xué)生數(shù)可提高10%,請(qǐng)估計(jì)經(jīng)過訓(xùn)練后九年級(jí)數(shù)學(xué)成績(jī)?cè)贐等級(jí)以上(含B等級(jí))的學(xué)生可達(dá)多少人?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學(xué)成績(jī)更穩(wěn)定的是甲;故選A.【點(diǎn)睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.2、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.3、B【解析】試題分析:觀察圖象可知,拋物線y=x2+bx+c與x軸的交點(diǎn)的橫坐標(biāo)分別為(﹣1,0)、(1,0),所以當(dāng)y<0時(shí),x的取值范圍正好在兩交點(diǎn)之間,即﹣1<x<1.故選B.考點(diǎn):二次函數(shù)的圖象.1061444、A【解析】解:連接OB、OC,連接AO并延長(zhǎng)交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點(diǎn)睛:本題考查的是三角形的外接圓與外心、扇形面積的計(jì)算,掌握等邊三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.5、B【解析】

直接利用平行線的性質(zhì)得出∠4的度數(shù),再利用對(duì)頂角的性質(zhì)得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點(diǎn)睛】此題主要考查了平行線的性質(zhì),正確得出∠4的度數(shù)是解題關(guān)鍵.6、B【解析】

根據(jù)只有符號(hào)不同的兩個(gè)數(shù)互為相反數(shù),可得答案.【詳解】7的相反數(shù)是?7,故選:B.【點(diǎn)睛】此題考查相反數(shù),解題關(guān)鍵在于掌握其定義.7、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點(diǎn),∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內(nèi)切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.8、B【解析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長(zhǎng)為=π.故選B.點(diǎn)睛:此題考查了切線的性質(zhì),含30度直角三角形的性質(zhì),以及弧長(zhǎng)公式,熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.9、D【解析】分析:依據(jù)AB∥CD,可得∠3+∠5=180°,再根據(jù)∠5=∠4,即可得出∠3+∠4=180°.詳解:如圖,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故選D.點(diǎn)睛:本題考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,同旁內(nèi)角互補(bǔ).10、B【解析】

根據(jù)軸對(duì)稱圖形的定義,逐一進(jìn)行判斷.【詳解】A、C是中心對(duì)稱圖形,但不是軸對(duì)稱圖形;B是軸對(duì)稱圖形;D不是對(duì)稱圖形.故選B.【點(diǎn)睛】本題考查的是軸對(duì)稱圖形的定義.二、填空題(共7小題,每小題3分,滿分21分)11、﹣1C.【解析】∵將數(shù)軸按如圖所示從某一點(diǎn)開始折出一個(gè)等邊三角形ABC,設(shè)點(diǎn)A表示的數(shù)為x﹣1,點(diǎn)B表示的數(shù)為2x+1,點(diǎn)C表示的數(shù)為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數(shù)為:x﹣1=﹣1﹣1=﹣6,點(diǎn)B表示的數(shù)為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長(zhǎng)為1,數(shù)字2012對(duì)應(yīng)的點(diǎn)與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發(fā)到2012點(diǎn)滾動(dòng)672周,∴數(shù)字2012對(duì)應(yīng)的點(diǎn)將與△ABC的頂點(diǎn)C重合.故答案為﹣1,C.點(diǎn)睛:此題主要考查了等邊三角形的性質(zhì),實(shí)數(shù)與數(shù)軸,一元一次方程等知識(shí),本題將數(shù)與式的考查有機(jī)地融入“圖形與幾何”中,滲透“數(shù)形結(jié)合思想”、“方程思想”等,也是一道較優(yōu)秀的操作活動(dòng)型問題.12、4cm.【解析】

由題意知OD⊥AB,交AB于點(diǎn)C,由垂徑定理可得出BC的長(zhǎng),在Rt△OBC中,根據(jù)勾股定理求出OC的長(zhǎng),由CD=OD-OC即可得出結(jié)論.【詳解】由題意知OD⊥AB,交AB于點(diǎn)E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【點(diǎn)睛】本題考查的是垂徑定理的應(yīng)用,根據(jù)題意在直角三角形運(yùn)用勾股定理列出方程是解答此題的關(guān)鍵.13、y=(x﹣1)2+【解析】

直接利用拋物線與坐標(biāo)軸交點(diǎn)求法結(jié)合頂點(diǎn)坐標(biāo)求法分別得出M、N點(diǎn)坐標(biāo),進(jìn)而得出平移方向和距離,即可得出平移后解析式.【詳解】解:y=x2-x+3=(x-)2+,∴N點(diǎn)坐標(biāo)為:(,),令x=0,則y=3,∴M點(diǎn)的坐標(biāo)是(0,3).∵平移該拋物線,使點(diǎn)M平移后的對(duì)應(yīng)點(diǎn)M′與點(diǎn)N重合,∴拋物線向下平移個(gè)單位長(zhǎng)度,再向右平移個(gè)單位長(zhǎng)度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.【點(diǎn)睛】此題主要考查了拋物線與坐標(biāo)軸交點(diǎn)求法以及二次函數(shù)的平移,正確得出平移方向和距離是解題關(guān)鍵.14、x>1【解析】試題解析:由題意得:>0,∵-6<0,∴1-x<0,∴x>1.15、【解析】

先根據(jù)平行四邊形的性質(zhì)求出對(duì)角線所分的四個(gè)三角形面積相等,再求出概率即可.【詳解】解:∵四邊形是平行四邊形,∴對(duì)角線把平行四邊形分成面積相等的四部分,觀察發(fā)現(xiàn):圖中陰影部分面積=S四邊形,∴針頭扎在陰影區(qū)域內(nèi)的概率為;故答案為:.【點(diǎn)睛】此題主要考查了幾何概率,以及平行四邊形的性質(zhì),用到的知識(shí)點(diǎn)為:概率=相應(yīng)的面積與總面積之比.16、或【解析】試題分析:AC===,因?yàn)榫匦味枷嗨?,且每相鄰兩個(gè)矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點(diǎn):1.相似多邊形的性質(zhì);2.勾股定理;3.規(guī)律型;4.矩形的性質(zhì);5.綜合題.17、240【解析】根據(jù)圖示,得出機(jī)器人的行走路線是沿著一個(gè)正八邊形的邊長(zhǎng)行走一周,是解決本題的關(guān)鍵,考察了計(jì)算多邊形的周長(zhǎng),本題中由于機(jī)器人最后必須回到起點(diǎn),可知此機(jī)器人一共轉(zhuǎn)了360°,我們可以計(jì)算機(jī)器人所轉(zhuǎn)的回?cái)?shù),即360°÷45°=8,則機(jī)器人的行走路線是沿著一個(gè)正八邊形的邊長(zhǎng)行走一周,故機(jī)器人一共行走6×8=48m,根據(jù)時(shí)間=路程÷速度,即可得出結(jié)果.本題解析:依據(jù)題中的圖形,可知機(jī)器人一共轉(zhuǎn)了360°,∵360°÷45°=8,∴機(jī)器人一共行走6×8=48m.∴該機(jī)器人從開始到停止所需時(shí)間為48÷0.2=240s.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)當(dāng)t=3時(shí),△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進(jìn)而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對(duì)應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進(jìn)而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時(shí)Q的坐標(biāo)即可;(3)當(dāng)△AEQ的面積最大時(shí),D、E、F都是中點(diǎn),分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時(shí),AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當(dāng)t=3時(shí),△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點(diǎn)為BC的中點(diǎn),線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時(shí),可得P1(3,0),P3(6,3),當(dāng)AD為對(duì)角線時(shí),P2(0,3),綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(3,0)或(6,3)或(0,3).【點(diǎn)睛】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問題,學(xué)會(huì)用分類討論的思想思考問題,屬于中考?jí)狠S題.19、(1);(2)【解析】

(1)用樹狀圖分3次實(shí)驗(yàn)列舉出所有情況,再看3輛車都選擇A通道通過的情況數(shù)占總情況數(shù)的多少即可;

(2)由(1)可知所有可能的結(jié)果數(shù)目,再看至少有兩輛汽車選擇B通道通過的情況數(shù)占總情況數(shù)的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數(shù)有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.【點(diǎn)睛】考查了概率的求法;用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比;得到所求的情況數(shù)是解決本題的關(guān)鍵.20、(4)4;(2);(4)點(diǎn)E的坐標(biāo)為(4,2)、(,)、(4,2).【解析】分析:(4)過點(diǎn)B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運(yùn)用三角函數(shù)求出BH即可.(2)過點(diǎn)B作BH⊥OA于H,過點(diǎn)G作GF⊥OA于F,過點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運(yùn)用勾股定理可求出r=2,從而得到點(diǎn)D與點(diǎn)H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進(jìn)而可求出BR.在Rt△ORB中運(yùn)用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運(yùn)用相似三角形的性質(zhì)及三角函數(shù)等知識(shí)建立關(guān)于t的方程就可解決問題.詳解:(4)過點(diǎn)B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點(diǎn)B作BH⊥OA于H,過點(diǎn)G作GF⊥OA于F,過點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點(diǎn)D與點(diǎn)H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設(shè)OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當(dāng)∠BDE=90°時(shí),點(diǎn)D在直線PE上,如圖2.此時(shí)DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點(diǎn)E的坐標(biāo)為(4,2).②當(dāng)∠BED=90°時(shí),如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點(diǎn)E的坐標(biāo)為().③當(dāng)∠DBE=90°時(shí),如圖4.此時(shí)PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點(diǎn)E的坐標(biāo)為(4,2).綜上所述:當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時(shí)點(diǎn)E的坐標(biāo)為(4,2)、()、(4,2).點(diǎn)睛:本題考查了圓周角定理、切線的性質(zhì)、相似三角形的判定與性質(zhì)、三角函數(shù)的定義、平行線分線段成比例、矩形的判定與性質(zhì)、勾股定理等知識(shí),還考查了分類討論的數(shù)學(xué)思想,有一定的綜合性.21、到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;三角形的高的定義;兩點(diǎn)確定一條直線【解析】

利用作法和線段垂直平分線定理的逆定理可得到BC垂直平分AE,然后根據(jù)三角形高的定義得到AD為高【詳解】解:由作法得BC垂直平分AE,所以該尺規(guī)作圖的依據(jù)為到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;三角形的高的定義;兩點(diǎn)確定一條直線.故答案為到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;三角形的高的定義;兩點(diǎn)確定一條直線.【點(diǎn)睛】此題考查三角形高的定義,解題的關(guān)鍵在于利用線段垂直平分線定理的逆定理求解.22、(1);(2)(0,)或(0,4).【解析】試題分析:(1)將A點(diǎn)的坐標(biāo)代入拋物線中,即可得出二次函數(shù)的解析式;(2)本題要分兩種情況進(jìn)行討論:①PB=AB,先根據(jù)拋物線的解析式求出B點(diǎn)的坐標(biāo),即可得出OB的長(zhǎng),進(jìn)而可求出AB的長(zhǎng),也就知道了PB的長(zhǎng),由此可求出P點(diǎn)的坐標(biāo);②PA=AB,此時(shí)P與B關(guān)于x軸對(duì)稱,由此可求出P點(diǎn)的坐標(biāo).試題解析:(1)∵拋物線經(jīng)過點(diǎn)A(1,0),∴,∴;(2)∵拋物線的解析式為,∴令,則,∴B點(diǎn)坐標(biāo)(0,﹣4),AB=,①當(dāng)PB=AB時(shí),PB=AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論