版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.二次根式中,的取值范圍是()A. B. C. D.2.如圖,已知⊙O中,半徑OC垂直于弦AB,垂足為D,若OD=3,OA=5,則AB的長為()A.2 B.4 C.6 D.83.如圖,正方形ABCD中,點EF分別在BC、CD上,△AEF是等邊三角形,連AC交EF于G,下列結論:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正確的個數(shù)為()A.1 B.2 C.3 D.44.的倒數(shù)是()A.1 B.2 C. D.5.已知二次函數(shù)的圖象如圖所示,分析下列四個結論:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正確的結論有()A.1個 B.2個 C.3個 D.4個6.如圖,AB為圓O直徑,C、D是圓上兩點,ADC=110°,則OCB度()A.40 B.50 C.60 D.707.如圖,一圓弧過方格的格點A、B、C,在方格中建立平面直角坐標系,使點A的坐標為(﹣3,2),則該圓弧所在圓心坐標是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)8.某商品經(jīng)過連續(xù)兩次降價,售價由原來的每件25元降到每件16元,則平均每次降價的百分率為().A.; B.; C.; D..9.如圖,四邊形ABCD內(nèi)接于⊙O,已知∠A=80°,則∠C的度數(shù)是()A.40° B.80° C.100° D.120°10.如圖,在正方形ABCD中,E為AB的中點,G,F(xiàn)分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.5二、填空題(每小題3分,共24分)11.如圖所示的拋物線形拱橋中,當拱頂離水面2m時,水面寬4m.如果以拱頂為原點建立直角坐標系,且橫軸平行于水面,那么拱橋線的解析式為_____.12.兩個函數(shù)和(abc≠0)的圖象如圖所示,請直接寫出關于x的不等式的解集_______________.13.如圖,AB是⊙O的直徑,C、D為⊙O上的點,P為圓外一點,PC、PD均與圓相切,設∠A+∠B=130°,∠CPD=β,則β=_____.14.現(xiàn)有5張正面分別標有數(shù)字0,1,2,3,4的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,則使得關于的一元二次方程有實數(shù)根,且關于的分式方程有整數(shù)解的概率為.15.如圖,是的直徑,弦與弦長度相同,已知,則________.16.過⊙O內(nèi)一點M的最長弦為10cm,最短弦為8cm,則OM=cm.17.已知⊙O的半徑為,圓心O到直線L的距離為,則直線L與⊙O的位置關系是___________.18.的半徑為,、是的兩條弦,.,,則和之間的距離為______三、解答題(共66分)19.(10分)如圖,已知拋物線與y軸相交于點A(0,3),與x正半軸相交于點B,對稱軸是直線x=1.(1)求此拋物線的解析式以及點B的坐標.(2)動點M從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向運動,同時動點N從點O出發(fā),以每秒3個單位長度的速度沿y軸正方向運動,當N點到達A點時,M、N同時停止運動.過動點M作x軸的垂線交線段AB于點Q,交拋物線于點P,設運動的時間為t秒.①當t為何值時,四邊形OMPN為矩形.②當t>0時,△BOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.20.(6分)如圖,在銳角△ABC中,小明進行了如下的尺規(guī)作圖:①分別以點A、B為圓心,以大于12AB的長為半徑作弧,兩弧分別相交于點P、Q②作直線PQ分別交邊AB、BC于點E、D.(1)小明所求作的直線DE是線段AB的;(2)聯(lián)結AD,AD=7,sin∠DAC=17,BC=9,求AC21.(6分)等腰中,,作的外接圓⊙O.(1)如圖1,點為上一點(不與A、B重合),連接AD、CD、AO,記與的交點為.①設,若,請用含與的式子表示;②當時,若,求的長;(2)如圖2,點為上一點(不與B、C重合),當BC=AB,AP=8時,設,求為何值時,有最大值?并請直接寫出此時⊙O的半徑.22.(8分)如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0).(1)畫出△ABC關于x軸對稱的△A1B1C1;(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2,并寫出點C2的坐標;(3)△A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標.23.(8分)一個不透明袋子中有個紅球,個綠球和個白球,這些球除顏色外無其他差別,當時,從袋中隨機摸出個球,摸到紅球和摸到白球的可能性(填“相同”或“不相同”);從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于,則的值是;在的情況下,如果一次摸出兩個球,請用樹狀圖或列表法求摸出的兩個球顏色不同的概率.24.(8分)甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.(1)求從袋中隨機摸出一球,標號是1的概率;(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.25.(10分)如圖,函數(shù)y=2x和y=﹣x+4的圖象相交于點A,(1)求點A的坐標;(2)根據(jù)圖象,直接寫出不等式2x≥﹣x+4的解集.26.(10分)先化簡,再選擇一個恰當?shù)臄?shù)代入后求值.
參考答案一、選擇題(每小題3分,共30分)1、A【解析】根據(jù)二次根式有意義的條件:被開方數(shù)為非負數(shù)解答即可.【詳解】∵是二次根式,∴x-3≥0,解得x≥3.故選A.本題考查了二次根式有意義的條件.熟記二次根式的被開方數(shù)是非負數(shù)是解題關鍵.2、D【解析】利用垂徑定理和勾股定理計算.【詳解】根據(jù)勾股定理得,根據(jù)垂徑定理得AB=2AD=8故選:D.考查勾股定理和垂徑定理,熟練掌握垂徑定理是解題的關鍵.3、C【解析】通過條件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,設EC=x,用含x的式子表示的BE、EF,利用三角形的面積公式分別表示出S△CEF和2S△ABE再通過比較大小就可以得出結論.【詳解】①∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵△AEF等邊三角形,∴AE=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴AC是EF的垂直平分線,∴AC平分∠EAF,∴∠EAC=∠FAC=×60°=30°,∵∠BAC=∠DAC=45°,∴∠BAE=∠DAF=15°,故①正確;②設EC=x,則FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60°=EFsin60°=2×CGsin60°=2×CG,∴AG=CG,故②正確;③由②知:設EC=x,EF=x,AC=CG+AG=CG+CG=,∴AB==,∴BE=AB﹣CE=﹣x=,∴BE+DF=2×=(﹣1)x≠x,故③錯誤;④S△CEF=,S△ABE=BE?AB=,∴S△CEF=2S△ABE,故④正確,所以本題正確的個數(shù)有3個,分別是①②④,故選C.本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關鍵.4、B【分析】根據(jù)特殊角的三角函數(shù)值即可求解.【詳解】=故的倒數(shù)是2,故選B.此題主要考查倒數(shù),解題的關鍵是熟知特殊角的三角函數(shù)值.5、B【解析】①由拋物線的開口方向,拋物線與y軸交點的位置、對稱軸即可確定a、b、c的符號,即得abc的符號;
②由拋物線與x軸有兩個交點判斷即可;③由,a<1,得到b>2a,所以2a-b<1;④由當x=1時y<1,可得出a+b+c<1.【詳解】解:①∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),與y軸交于正半軸,
∴a<1,,c>1,∴b<1,
∴abc>1,結論①錯誤;
②∵二次函數(shù)圖象與x軸有兩個交點,
∴b2-4ac>1,結論②正確;③∵,a<1,
∴b>2a,
∴2a-b<1,結論③錯誤;
④∵當x=1時,y<1;
∴a+b+c<1,結論④正確.
故選:B.本題考查了二次函數(shù)圖象與系數(shù)的關系.二次函數(shù)y=ax2+bx+c(a≠1)系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.6、D【分析】根據(jù)角的度數(shù)推出弧的度數(shù),再利用外角∠AOC的性質(zhì)即可解題.【詳解】解:∵ADC=110°,即優(yōu)弧的度數(shù)是220°,∴劣弧的度數(shù)是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故選D.本題考查圓周角定理、外角的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.7、C【解析】如圖:分別作AC與AB的垂直平分線,相交于點O,則點O即是該圓弧所在圓的圓心.∵點A的坐標為(﹣3,2),∴點O的坐標為(﹣2,﹣1).故選C.8、A【分析】可設降價的百分率為,第一次降價后的價格為,第一次降價后的價格為,根據(jù)題意列方程求解即可.【詳解】解:設降價的百分率為根據(jù)題意可列方程為解方程得,(舍)∴每次降價得百分率為故選A.本題考查了一元二次方程的在銷售問題中的應用,正確理解題意,找出題中等量關系是解題的關鍵.9、C【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C+∠A=180°,代入求出即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,
∴∠C+∠A=180°,
∵∠A=80°,
∴∠C=100°,
故選:C.本題考查了圓內(nèi)接四邊形的性質(zhì)的應用.熟記圓內(nèi)接四邊形對角互補是解決此題的關鍵.10、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質(zhì)的應用,利用勾股定理即可得解,解題的關鍵是證明△AEG∽△BFE.二、填空題(每小題3分,共24分)11、y=x1【解析】根據(jù)題意以拱頂為原點建立直角坐標系,即可求出解析式.【詳解】如圖:以拱頂為原點建立直角坐標系,由題意得A(1,?1),C(0,?1),設拋物線的解析式為:y=ax1把A(1,?1)代入,得4a=?1,解得a=?,所以拋物線解析式為y=?x1.故答案為:y=?x1.本題考查了二次函數(shù)的應用,解決本題的關鍵是根據(jù)題意建立平面直角坐標系.12、或;【分析】由題意可知關于x的不等式的解集實際上就是一次函數(shù)的值大于反比例函數(shù)的值時自變量x的取值范圍,由于反比例函數(shù)的圖象有兩個分支,因此可以分開來考慮.【詳解】解:關于x的不等式的解集實際上就是一次函數(shù)的值大于反比例函數(shù)的值時自變量x的取值范圍,觀察圖象的交點坐標可得:或.本題考查一次函數(shù)的圖象和性質(zhì)、反比例函數(shù)的圖象和性質(zhì)以及一次函數(shù)、反比例函數(shù)與一次不等式的關系,理解不等式與一次函數(shù)和反比例函數(shù)的關系式解決問題的關鍵.13、100°【分析】連結OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根據(jù)OB=OC,OD=OA,可得∠BOC=180°?2∠B,∠AOD=180°?2∠A,則可得出與β的關系式.進而可求出β的度數(shù).【詳解】連結OC,OD,∵PC、PD均與圓相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案為:100°.本題利用了切線的性質(zhì),圓周角定理,四邊形的內(nèi)角和為360度求解,解題的關鍵是熟練掌握切線的性質(zhì).14、【詳解】首先根據(jù)一元二次方程有實數(shù)解可得:4-4(a-2)≥0可得:a≤3,則符合條件的a有0,1,2,3四個;解分式方程可得:x=,∵x≠2,則a≠1,a≠2,綜上所述,則滿足條件的a為0和3,則P=.考點:(1)、概率;(2)、分式方程的解.15、【分析】連接BD交OC與E,得出,從而得出;再根據(jù)弦與弦長度相同得出,即可得出的度數(shù).【詳解】連接BD交OC與E是的直徑弦與弦長度相同故答案為.本題考查了圓周角定理,輔助線得出是解題的關鍵.16、3【解析】試題分析:最長弦即為直徑,最短弦即為以M為中點的弦,所以此時考點:弦心距與弦、半徑的關系點評:17、相交【分析】先根據(jù)題意判斷出直線與圓的位置關系即可得出結論.【詳解】∵⊙O的半徑為6cm,圓心O到直線l的距離為5cm,6cm>5cm,∴直線l與⊙O相交,故答案為:相交.本題考查的是直線與圓的位置關系,熟知設⊙O的半徑為r,圓心O到直線l的距離為d,當d<r時,直線與圓相交是解答此題的關鍵.18、7cm或17cm【分析】作OE⊥AB于E,交CD于F,連結OA、OC,如圖,根據(jù)平行線的性質(zhì)得OF⊥CD,再利用垂徑定理得到AE=12,CF=5,然后根據(jù)勾股定理,在Rt△OAE中計算出OE=5,在Rt△OCF中計算出OF=12,再分類討論:當圓心O在AB與CD之間時,EF=OF+OE;當圓心O不在AB與CD之間時,EF=OF?OE.【詳解】解:作OE⊥AB于E,交CD于F,連結OA、OC,如圖,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=12,CF=DF=CD=5,在Rt△OAE中,∵OA=13,AE=12,∴OE=,在Rt△OCF中,∵OC=13,CF=5,∴OF=,當圓心O在AB與CD之間時,EF=OF+OE=12+5=17;當圓心O不在AB與CD之間時,EF=OF?OE=12?5=7;即AB和CD之間的距離為7cm或17cm.故答案為:7cm或17cm.本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ砗头诸愑懻摰臄?shù)學思想.三、解答題(共66分)19、(1),B點坐標為(3,0);(2)①;②.【分析】(1)由對稱軸公式可求得b,由A點坐標可求得c,則可求得拋物線解析式;再令y=0可求得B點坐標;(2)①用t可表示出ON和OM,則可表示出P點坐標,即可表示出PM的長,由矩形的性質(zhì)可得ON=PM,可得到關于t的方程,可求得t的值;②由題意可知OB=OA,故當△BOQ為等腰三角形時,只能有OB=BQ或OQ=BQ,用t可表示出Q點的坐標,則可表示出OQ和BQ的長,分別得到關于t的方程,可求得t的值.【詳解】(1)∵拋物線對稱軸是直線x=1,∴﹣=1,解得b=2,∵拋物線過A(0,3),∴c=3,∴拋物線解析式為,令y=0可得,解得x=﹣1或x=3,∴B點坐標為(3,0);(2)①由題意可知ON=3t,OM=2t,∵P在拋物線上,∴P(2t,),∵四邊形OMPN為矩形,∴ON=PM,∴3t=,解得t=1或t=﹣(舍去),∴當t的值為1時,四邊形OMPN為矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直線AB解析式為y=﹣x+3,∴當t>0時,OQ≠OB,∴當△BOQ為等腰三角形時,有OB=QB或OQ=BQ兩種情況,由題意可知OM=2t,∴Q(2t,﹣2t+3),∴OQ=,BQ=|2t﹣3|,又由題意可知0<t<1,當OB=QB時,則有|2t﹣3|=3,解得t=(舍去)或t=;當OQ=BQ時,則有=|2t﹣3|,解得t=;綜上可知當t的值為或時,△BOQ為等腰三角形.20、(1)線段AB的垂直平分線(或中垂線);(2)AC=53.【解析】(1)垂直平分線:經(jīng)過某一條線段的中點,并且垂直于這條線段的直線,叫做這條線段的垂直平分線(2)根據(jù)題意垂直平分線定理可得AD=BD,得到CD=2,又因為已知sin∠DAC=17,故可過點D作AC垂線,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC長【詳解】(1)小明所求作的直線DE是線段AB的垂直平分線(或中垂線);故答案為線段AB的垂直平分線(或中垂線);(2)過點D作DF⊥AC,垂足為點F,如圖,∵DE是線段AB的垂直平分線,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43本題考查了垂直平分線的尺規(guī)作圖方法,三角函數(shù)和勾股定理求線段長度,解本題的關鍵是充分利用中垂線,將已知條件與未知條件結合起來解題.21、(1)①;②;(2)PB=5時,S有最大值,此時⊙O的半徑是.【分析】(1)①連接BO、CO,利用SSS可證明△ABO≌△ACO,可得∠BAO=∠CAO=y,利用等腰三角形的性質(zhì)及三角形內(nèi)角和定理可用y表示出∠ABC,由圓周角定理可得∠DCB=∠DAB=x,根據(jù)即可得答案;②過點作于點,根據(jù)垂徑定理可得AF的長,利用勾股定理可求出OF的長,由(1)可得,由AB⊥CD可得n=90°,即可證明y=x,根據(jù)AB⊥CD,OF⊥AC可證明△AED∽△AFO,設DE=a,根據(jù)相似三角形的性質(zhì)可,由∠D=∠B,∠AED=∠CEB=90°可證明△AED∽△CEB,設,根據(jù)相似三角形的性質(zhì)可得,根據(jù)線段的和差關系和勾股定理列方程組可求出a、b的值,根據(jù)△AED∽△AFO即可求出AD的值;(2)延長到,使得,過點B作BD⊥AP于D,BE⊥CP,交CP延長線于E,連接OA,作OF⊥AB于F,根據(jù)BC=AB可得三角形ABC是等邊三角形,根據(jù)圓周角定理可得∠APM=60°,即可證明△APM是等邊三角形,利用角的和差關系可得∠BAP=∠CAM,利用SAS可證明△BAP≌△CPM,可得BP=CM,即可得出PB+PC=AP,設,則,利用∠APB和∠BPE的正弦可用x表示出BD、BE的長,根據(jù)可得S與x的關系式,根據(jù)二次函數(shù)的性質(zhì)即可求出S取最大值時x的值,利用∠BPA的余弦及勾股定理可求出AB的長,根據(jù)等邊三角形的性質(zhì)及垂徑定理求出OA的長即可得答案.【詳解】(1)①連接BO,CO,∵,且為公共邊,∴,∴,∴,∴∵,∵,∴∴.②過點作于點,∴,∴,∵,∴,∴,∵,∴,∴△AED∽△AFO,∴=,即,設,則∵,∴△AED∽△CEB,∴,即設,則,∴解得:或,∵a>0,b>0,∴,即DE=,∵△AED∽△AFO,∴,∴AD==3=.(2)延長到,使得,過點B作BD⊥AP于D,BE⊥CP,交CP延長線于E,連接OA,作OF⊥AB于F,∵BC=AB,AB=AC,∴是等邊三角形,∴,∴,∴是等邊三角形,∴,∵∠BAP+∠PAC=∠CAM+∠PAC=60°,∴在△BAP和△CAM中,,∴,∴,∴設,則,∵∠APB=∠ACB=60°,∠APM=60°,∴∠BPE=60°,∴BE=PB·sin60°=,PD=PB·sin60°=,∵,∴S=PC·BE+×AP·BD=,∴當時,即PB=5時,S有最大值,∴BD==,PD=PB·cos60°=,∴AD=AP-PD=,∴AB==7,∵△ABC是等邊三角形,O為△ABC的外接圓圓心,∴∠OAF=30°,AF=AB=,∴OA==.∴此時的半徑是.本題考查圓周角定理、相似三角形的判定與性質(zhì)、垂徑定理、等邊三角形的判定與性質(zhì)、求二次函數(shù)的最值及解直角三角形,綜合性比較強,熟練掌握相關的性質(zhì)及定理是解題關鍵.22、(1)見解析;(2)見解析,點C2的坐標為(1,3);(3)△A1B1C1與△A2B2C2成中心對稱,對稱中心為(,)【解析】(1)作出A、B、C關于x軸的對稱點,然后順次連接即可得到;(2)把A、B、C繞原點按逆時針旋轉(zhuǎn)90度得到對應點,然后順次連接即可得到,根據(jù)圖可寫出C2的坐標;(3)成中心對稱,連續(xù)各對稱點,連線的交點就是對稱中心,從而可以找出對稱中心的坐標.【詳解】(1)如圖所示,△A1B1C1即為所求.(2)如圖所示,△A2B2C2即為所求,點C2的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 解一元一次方程移項方法
- 一元一次方程的應用5
- 工廠員工培訓及管理方案
- 《機械制造工藝》課件-工藝方案的比較與技術經(jīng)濟性指標
- 抹灰施工中進場材料檢驗方案
- 施工現(xiàn)場安全教育方案
- 管網(wǎng)改造項目財務管理方案
- 施工人員培訓與考核方案
- 施工階段溝通協(xié)調(diào)方案
- 給水工程項目管理體系
- TCNAS50-2025成人吞咽障礙患者口服給藥護理學習解讀課件
- 工程概算編制方案
- 2026年全球美容與個人護理趨勢預測報告-英敏特-202510
- 2025至2030全球及中國供應鏈的區(qū)塊鏈行業(yè)項目調(diào)研及市場前景預測評估報告
- 2025內(nèi)蒙古通遼市扎魯特旗巨日合鎮(zhèn)人民政府招聘護林員9人考試參考試題及答案解析
- 議論文寫作入門指導課件統(tǒng)編版高一語文必修上冊
- 北師大版初中英語七年級上冊期末復習試卷及答案
- 脛骨平臺骨折課件
- 2025-2030中國建筑行業(yè)人才需求與培養(yǎng)戰(zhàn)略研究報告
- 林下經(jīng)濟培訓課件
- 廣東省廣州市花都區(qū)2023-2024學年七年級下學期期末地理試卷(含答案)
評論
0/150
提交評論