基礎(chǔ)強化江西省井岡山市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題訓(xùn)練練習(xí)題(詳解)_第1頁
基礎(chǔ)強化江西省井岡山市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題訓(xùn)練練習(xí)題(詳解)_第2頁
基礎(chǔ)強化江西省井岡山市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題訓(xùn)練練習(xí)題(詳解)_第3頁
基礎(chǔ)強化江西省井岡山市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題訓(xùn)練練習(xí)題(詳解)_第4頁
基礎(chǔ)強化江西省井岡山市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題訓(xùn)練練習(xí)題(詳解)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江西省井岡山市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、兩個直角三角板如圖擺放,其中,,,AB與DF交于點M.若,則的大小為(

)A. B. C. D.2、如圖,結(jié)合圖形作出了如下判斷或推理:①如圖甲,如果,為垂足,那么點到的距離等于,兩點間的距離;②如圖乙,如果,那么;③如圖丙,如果,,那么;④如圖丁,如果,,那么.其中正確的有(

)A.1個 B.2個 C.3個 D.4個3、在△ABC中,如果∠A﹣∠B=90°,那么△ABC是()A.直角三角形 B.鈍角三角形 C.銳角三角形 D.斜三角形4、如圖,在中,,,平分,則的度數(shù)是(

)A. B. C. D.5、如圖,將沿著平行于的直線折疊,點落在點處,若,則的度數(shù)是(

)A.108° B.104° C.96° D.92°6、如圖四邊形ABCD中,,將四邊形沿對角線AC折疊,使點B落在點處,若∠1=∠2=44°,則∠B為(

).A.66° B.104° C.114° D.124°7、如圖,∠B=∠C,則∠ADC與∠AEB的大小關(guān)系是(

)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關(guān)系不確定8、如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖.有一個三角形紙片,,,將紙片一角折疊,使點落在外,若,則的大小為______.2、如圖,點D是△ABC兩條角平分線AP、CE的交點,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.3、如圖,則∠A+∠B+∠C+∠D+∠E的度數(shù)是__.4、把“等角的余角相等”改寫成“如果……那么……”的形式是_________,________,該命題是___命題(填“真”或“假”).5、把“對頂角相等”改寫成“如果…那么…”的形式____________________________________________.6、如圖所示,請你填寫一個適當(dāng)?shù)臈l件:_____,使AD∥BC.7、如圖,在中,,將沿直線m翻折,點B落在點D的位置,則__________.三、解答題(7小題,每小題10分,共計70分)1、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).2、已知:直線EF分別與直線AB,CD相交于點G,H,并且∠AGE+∠DHE=180°.(1)如圖1,求證:AB∥CD;(2)如圖2,點M在直線AB,CD之間,連接GM,HM,求證:∠M=∠AGM+∠CHM;(3)如圖3,在(2)的條件下,射線GH是∠BGM的平分線,在MH的延長線上取點N,連接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度數(shù).3、如圖,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度數(shù).4、如圖,在△ABC中,D為AB邊上一點,E為BC邊上一點,∠BCD=∠BDC(1)若∠ACD=15°,∠CAD=40°,則∠B=度(直接寫出答案);(2)請說明:∠EAB+∠AEB=2∠BDC的理由.5、如圖,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度數(shù).6、(1)探究:如圖1,求證:;(2)應(yīng)用:如圖2,,,求的度數(shù).

7、如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;(2)請你直接利用以上結(jié)論,解決以下三個問題:①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、圖(1)XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;②如圖(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);(寫出解答過程)③如圖(4),∠ABD,∠ACD的10等分線相交于點G1、G2、G9,若∠BDC=140°,∠BG1C=77°,則∠A的度數(shù)=__________°.-參考答案-一、單選題1、C【解析】【分析】根據(jù),可得再根據(jù)三角形內(nèi)角和即可得出答案.【詳解】由圖可得∵,∴∴故選:C.【考點】本題考查了平行線的性質(zhì)和三角形的內(nèi)角和,掌握平行線的性質(zhì)和三角形的內(nèi)角和是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)點到直線的距離及兩點間的距離的定義可判斷①;根據(jù)平行線的性質(zhì)及三角形的外角的性質(zhì)可判斷②;根據(jù)平行線的判定可判斷③;根據(jù)平行線的判定與性質(zhì)可判斷④.【詳解】解:①由于直線外一點到直線的垂線段的長度,叫做這點到這條直線的距離,故正確;②設(shè)AB與DE相交于點O.∵AB∥CD,∴∠AOE=∠D.又∵∠AOE>∠B,∴∠D>∠B,故錯誤;③∵∠ACD=∠CAB,∴AB∥CD,,故錯誤;④∵∠1=∠2,∴AD∥BC,∴∠D+∠BCD=180°,又∵∠D=120°,∴∠BCD=60°,故正確.故選:B.【考點】本題主要考查了點到直線的距離的定義,平行線的判定與性質(zhì),三角形的外角的性質(zhì),正確理解相關(guān)概念和性質(zhì)是解本題的關(guān)鍵.3、B【解析】【分析】因為∠A﹣∠B=90°,即∠A=90°+∠B,那么∠A一定大于90°,即為鈍角三角形.【詳解】解:在△ABC中,∵∠A﹣∠B=90°,∴∠A=90°+∠B>90°(∠B肯定大于0o),那么△ABC是鈍角三角形.故選:B.【考點】此題考查了三角形內(nèi)角和定理,解題的關(guān)鍵是得到∠A一定大于90°.4、C【解析】【分析】在中,利用三角形內(nèi)角和為求,再利用平分,求出的度數(shù),再在利用三角形內(nèi)角和定理即可求出的度數(shù).【詳解】∵在中,,.∴.∵平分.∴.∴.故選C.【考點】本題考查了三角形的內(nèi)角和和角平分線的性質(zhì),熟練應(yīng)用性質(zhì)是解決問題的關(guān)鍵.5、D【解析】【分析】根據(jù)兩直線平行,同位角相等可得∠ADE=∠B,再根據(jù)翻折變換的性質(zhì)可得∠A′DE=∠ADE,然后根據(jù)平角等于180°列式計算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點A落到點A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點】本題考查了平行線的性質(zhì),翻折變換的性質(zhì),三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)兩直線平行,內(nèi)錯角相等可得,根據(jù)翻折變換的性質(zhì)可得,然后求出∠BAC,再根據(jù)三角形的內(nèi)角和等于180°列式計算即可得解.【詳解】解:在ABCD中,,∴,∵ABCD沿對角線AC折疊,使點B落在點處,∴,∴,在△ABC中,∠B=180°-∠BAC-∠2=180°-22°-44°=114°.故選C.【考點】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),三角形的內(nèi)角和定理,掌握“翻折前后對應(yīng)邊相等,對應(yīng)角相等”是解本題的關(guān)鍵.7、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點】本題主要考查三角形內(nèi)角和定理的應(yīng)用,利用了三角形內(nèi)角和為180度,此題難度不大.8、D【解析】【分析】同位角相等,兩直線平行,同旁內(nèi)角互補,兩直線平行,根據(jù)平行線的判定方法逐一分析即可.【詳解】解:(同位角相等,兩直線平行),故A不符合題意;∠2+∠3=180°,(同旁內(nèi)角互補,兩直線平行)故B不符合題意;(同位角相等,兩直線平行)故C不符合題意;∠1+∠4=180°,不是同旁內(nèi)角,也不能利用等量代換轉(zhuǎn)換成同旁內(nèi)角,所以不能判定故D符合題意;故選D【考點】本題考查的是平行線的判定,對頂角相等,掌握“平行線的判定方法”是解本題的關(guān)鍵.二、填空題1、【解析】【分析】先根據(jù)三角形的內(nèi)角和定理可出;再根據(jù)折疊的性質(zhì)得到,再利用三角形的內(nèi)角和定理以及外角性質(zhì)得,,即可得到,然后利用平角的定義即可求出.【詳解】解:如圖,,,∴;又將三角形紙片的一角折疊,使點落在外,∴而,,,,,.故答案為:【考點】本題考查了折疊的性質(zhì),三角形的內(nèi)角和定理以及外角性質(zhì),解題的關(guān)鍵是明確折疊前后兩圖形全等.2、110【解析】【分析】根據(jù)CE,AP分別平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根據(jù)三角形內(nèi)角和定理,求出∠ADC即可.【詳解】解:∵CE,AP分別平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案為:110.【考點】本題考查了角平分線的性質(zhì)和三角形內(nèi)角和定理,熟練掌握了角平分線的性質(zhì)是解題的關(guān)鍵.3、180°【解析】【分析】由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,得∠4=∠A+∠2,∠2=∠D+∠C,進(jìn)而利用三角形的內(nèi)角和定理求解.【詳解】解:如圖可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案為:180°.【考點】本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.4、如果兩個角是等角的余角,那么這兩個角相等;真【解析】【分析】命題由題設(shè)和結(jié)論兩部分組成.題設(shè)是已知事項,結(jié)論是由已知事項推出的事項.命題常??梢詫憺椤叭绻敲础钡男问剑绻竺娼宇}設(shè),那么后面接結(jié)論.題設(shè)成立,結(jié)論也成立的叫真命題,而題設(shè)成立,不保證結(jié)論成立的為假命題.【詳解】把“等角的余角相等”改寫成“如果…那么…”的形式是:如果兩個角是等角的余角,那么這兩個角相等.這個命題正確,是真命題,故答案為如果兩個角是等角的余角,那么這兩個角相等;真.【考點】本題考查了命題與定理,命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.5、如果兩個角是對頂角,那么它們相等【解析】【分析】先找到命題的題設(shè)和結(jié)論,再寫成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個角是對頂角”,結(jié)論是:“它們相等”,∴命題“對頂角相等”寫成“如果…那么…”的形式為:“如果兩個角是對頂角,那么它們相等”.故答案為:如果兩個角是對頂角,那么它們相等.【考點】本題考查了命題的條件和結(jié)論的敘述,注意確定一個命題的條件與結(jié)論的方法是首先把這個命題寫成:“如果…,那么…”的形式.6、∠FAD=∠FBC(答案不唯一)【解析】【詳解】根據(jù)同位角相等,兩直線平行,可填∠FAD=∠FBC;根據(jù)內(nèi)錯角相等,兩直線平行,可填∠ADB=∠DBC;根據(jù)同旁內(nèi)角互補,兩直線平行,可填∠DAB+∠ABC=180°.故答案為:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.7、【解析】【分析】根據(jù)折疊得出∠D=∠B=28°,根據(jù)三角形的外角性質(zhì)得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【詳解】解:如圖,∵∠B=28°,將△ABC沿直線m翻折,點B落在點D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案為:.【考點】本題考查了三角形的外角性質(zhì)和折疊的性質(zhì),能熟記三角形的外角性質(zhì)是解此題的關(guān)鍵,注意:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.三、解答題1、(1)平行;(2)115°.【解析】【分析】(1)先根據(jù)垂直的定義得到∠CDB=∠EFB=90°,然后根據(jù)同位角相等,兩直線平行可判斷EF∥CD;(2)由EF∥CD,根據(jù)平行線的性質(zhì)得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根據(jù)內(nèi)錯角相等,兩直線平行得到DG∥BC,所以∠ACB=∠3=115°.【詳解】解:(1)CD與EF平行.理由如下:CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2)如圖:EF∥CD,∴∠2=∠BCD又∠1=∠2,∴∠1=∠BCD∴DG∥BC,∴∠ACB=∠3=115°.【考點】本題考查了平行線的判定與性質(zhì):同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;兩直線平行,同位角相等.2、(1)見解析;(2)見解析;(3)60°【解析】【分析】(1)根據(jù)已知條件和對頂角相等即可證明;(2)如圖2,過點M作MR∥AB,可得AB∥CD∥MR.進(jìn)而可以證明;(3)如圖3,令∠AGM=2α,∠CHM=β,則∠N=2α,∠M=2α+β,過點H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,進(jìn)而可得結(jié)論.【詳解】(1)證明:如圖1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)證明:如圖2,過點M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如圖3,令∠AGM=2α,∠CHM=β,則∠N=2α,∠M=2α+β,∵射線GH是∠BGM的平分線,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,過點H作HT∥GN,則∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.【考點】本題考查了平行線的判定與性質(zhì),對頂角的性質(zhì),角平分線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).3、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根據(jù)三角形內(nèi)角和定理,即可得出結(jié)論.【詳解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考點】本題考查了三角形的內(nèi)角和定理,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、(1)70(2)見解析【解析】【分析】(1)利用三角形的外角性質(zhì)可求出∠BDC的度數(shù),結(jié)合∠BCD=∠BDC可得出∠BCD的度數(shù),再在△BCD中,利用三角形內(nèi)角和定理可求出∠B的度數(shù);(2)在△ABE中,利用三角形內(nèi)角和定理可得出∠EAB+∠AEB=180°﹣∠B,在△BCD中,利用三角形內(nèi)角和定理及∠BCD=∠BDC可得出2∠BDC=180°﹣∠B,進(jìn)而可得出∠EAB+∠AEB=2∠BDC.(1)解:∵∠ACD=15°,∠CAD=40°,∴∠BDC=∠ACD+∠CAD=55°,∴∠BCD=∠BDC=55°.在△BCD中,∠BDC+∠BCD+∠B=180°,∴∠B=180°﹣55°﹣55°=70°.故答案為:70;(2)解:在△ABE中,∠EAB+∠AEB+∠B=180°,∴∠EAB+∠AEB=180°﹣∠B.在△BCD中,∠BDC+∠BCD+∠B=180°,∠BCD=∠BDC,∴2∠BDC=180°﹣∠B,∴∠EAB+∠AEB=2∠BDC.【考點】本題考查了三角形內(nèi)角和定理以及三角形的外角性質(zhì),解題的關(guān)鍵是:(1)利用三角形的外角性質(zhì),求出∠BDC的度數(shù);(2)利用三角形內(nèi)角和定理,找出∠EAB+∠AEB=180°﹣∠B及2∠BDC=180°﹣∠B.5、∠DEC=58°.【解析】【分析】先根據(jù)∠A=55°,∠ACB=70°得出∠ABC的度數(shù),再由∠ABD=32°得出∠CBD的度數(shù),根據(jù)CE平分∠ACB得出∠BCE的度數(shù),最后用三角形的外角即可得出結(jié)論.【詳解】在△ABC中,∵∠A=55°,∠ACB=70°,∴∠ABC=55°,∵∠ABD=32°,∴∠CBD=∠ABC-∠ABD=23°,∵CE平分∠ACB,∴∠BCE=∠ACB=35°,∴在△BCE中,∠DEC=∠CBD+∠BCE=58°.【考點】此題考查了三角形內(nèi)角和定理和三角形外角的性質(zhì),熟練掌握這些性質(zhì)是解題的關(guān)鍵.6、230°【解析】【分析】(1)連接OA并延長,由三角形外角的性質(zhì)可知∠1+∠B=∠3,∠2+∠C=∠4,兩式相加即可得出結(jié)論;(2)連接AD,由(1)的結(jié)論可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,兩式相加即可得出結(jié)論.【詳解】(1)如圖1,連接AO并延長,∵是的外角,∴.①;∵是的外角,∴②;①+②,得,∴.(2)如圖2,連接AD.由(1),得③;④;③+④得:,∵,,∴.

【考點】本題考查的是三角形外角的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出三角形是解答此題的關(guān)鍵.7、(1)∠BDC=∠A+∠B+∠C,詳見解析;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論