版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆揚州市邗江區(qū)重點名校中考數(shù)學(xué)仿真試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.下列二次根式,最簡二次根式是()A.8 B.12 C.5 D.2.下列各式計算正確的是()A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6C.a(chǎn)3?a=a4 D.(﹣a2b)3=a6b33.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數(shù)為()A.80° B.70° C.60° D.50°4.如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當(dāng)C在⊙O上運動時,點P的位置()
A.隨點C的運動而變化B.不變C.在使PA=OA的劣弧上D.無法確定5.甲、乙兩船從相距300km的A、B兩地同時出發(fā)相向而行,甲船從A地順流航行180km時與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=6.如圖,直線l1∥l2,以直線l1上的點A為圓心、適當(dāng)長為半徑畫弧,分別交直線l1、l2于點B、C,連接AC、BC.若∠ABC=67°,則∠1=()A.23° B.46° C.67° D.78°7.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.8.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.9.下列各式中,互為相反數(shù)的是()A.和 B.和 C.和 D.和10.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)2+a2=a3 D.a(chǎn)6÷a2=a3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知P是正方形ABCD對角線BD上一點,且BP=BC,則∠ACP度數(shù)是_____度.12.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號都填上)13.拋物線y=2x2+4向左平移2個單位長度,得到新拋物線的表達(dá)式為_____.14.如圖,在△ABC中,DE∥BC,,則=_____.15.如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為______個.16.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設(shè)較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當(dāng)點B的移動距離為時,四邊ABC1D1為矩形;當(dāng)點B的移動距離為時,四邊形ABC1D1為菱形.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.求拋物線y=ax2+2x+c的解析式:;點D為拋物線上對稱軸右側(cè)、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由;②點Q在拋物線對稱軸上,其縱坐標(biāo)為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.18.(8分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當(dāng)△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當(dāng)△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當(dāng)△ABO是任意三角形時,設(shè)∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關(guān)系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.19.(8分)如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).20.(8分)平面直角坐標(biāo)系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側(cè)),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯(lián)結(jié)DC、BC.(1)當(dāng)點C(0,3)時,①求這條拋物線的表達(dá)式和頂點坐標(biāo);②求證:∠DCE=∠BCE;(2)當(dāng)CB平分∠DCO時,求m的值.21.(8分)在平面直角坐標(biāo)系xOy中,點C是二次函數(shù)y=mx2+4mx+4m+1的圖象的頂點,一次函數(shù)y=x+4的圖象與x軸、y軸分別交于點A、B.(1)請你求出點A、B、C的坐標(biāo);(2)若二次函數(shù)y=mx2+4mx+4m+1與線段AB恰有一個公共點,求m的取值范圍.22.(10分)如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點F,設(shè)AB=m,BC=n.(1)求證:∠BDA=∠ECA.(2)若m=,n=3,∠ABC=75°,求BD的長.(3)當(dāng)∠ABC=____時,BD最大,最大值為____(用含m,n的代數(shù)式表示)(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。23.(12分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)圖象直接寫出y1>y2時,x的取值范圍.24.如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、被開方數(shù)含開的盡的因數(shù),故A不符合題意;B、被開方數(shù)含分母,故B不符合題意;C、被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意;D、被開方數(shù)含能開得盡方的因數(shù)或因式,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.2、C【解析】各項計算得到結(jié)果,即可作出判斷.解:A、原式=4a2﹣b2,不符合題意;B、原式=3a3,不符合題意;C、原式=a4,符合題意;D、原式=﹣a6b3,不符合題意,故選C.3、B【解析】
直接利用平行線的性質(zhì)得出∠4的度數(shù),再利用對頂角的性質(zhì)得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點睛】此題主要考查了平行線的性質(zhì),正確得出∠4的度數(shù)是解題關(guān)鍵.4、B【解析】
因為CP是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴點P是線段AB垂直平分線和圓的交點,
∴當(dāng)C在⊙O上運動時,點P不動.
故選:B.【點睛】本題考查了圓心角、弦、弧之間的關(guān)系,以及平行線的判定和性質(zhì),在同圓或等圓中,等弧對等弦.5、A【解析】分析:直接利用兩船的行駛距離除以速度=時間,得出等式求出答案.詳解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點睛:此題主要考查了由實際問題抽象出分式方程,正確表示出行駛的時間和速度是解題關(guān)鍵.6、B【解析】
根據(jù)圓的半徑相等可知AB=AC,由等邊對等角求出∠ACB,再由平行得內(nèi)錯角相等,最后由平角180°可求出∠1.【詳解】根據(jù)題意得:AB=AC,∴∠ACB=∠ABC=67°,∵直線l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46o.故選B.【點睛】本題考查等腰三角形的性質(zhì),平行線的性質(zhì),熟練根據(jù)這些性質(zhì)得到角之間的關(guān)系是關(guān)鍵.7、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點:簡單組合體的三視圖.8、A【解析】
由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關(guān)系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應(yīng)該為1,2,3,故選A.【點睛】本題考查了三視圖的簡單性質(zhì),屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關(guān)系是解題關(guān)鍵.9、A【解析】
根據(jù)乘方的法則進(jìn)行計算,然后根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】解:A.=9,=-9,故和互為相反數(shù),故正確;B.=9,=9,故和不是互為相反數(shù),故錯誤;C.=-8,=-8,故和不是互為相反數(shù),故錯誤;D.=8,=8故和不是互為相反數(shù),故錯誤.故選A.【點睛】本題考查了有理數(shù)的乘方和相反數(shù)的定義,關(guān)鍵是掌握有理數(shù)乘方的運算法則.10、B【解析】試題解析:A.故錯誤.B.正確.C.不是同類項,不能合并,故錯誤.D.故選B.點睛:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.二、填空題(本大題共6個小題,每小題3分,共18分)11、22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°-45°)=67.5°,∴∠ACP度數(shù)是67.5°-45°=22.5°12、①②④【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【點睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.13、y=2(x+2)2+1【解析】試題解析:∵二次函數(shù)解析式為y=2x2+1,∴頂點坐標(biāo)(0,1)向左平移2個單位得到的點是(-2,1),可設(shè)新函數(shù)的解析式為y=2(x-h)2+k,代入頂點坐標(biāo)得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點睛:函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.14、【解析】
先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點睛】本題考查了相似三角形的判定和性質(zhì),中等難度,熟記相似三角形的面積比等于相似比的平方是解題關(guān)鍵.15、9n+1.【解析】
∵第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個圖由11個正方形和10個等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個圖由16個正方形和14個等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個圖中正方形和等邊三角形的個數(shù)之和=9n+1.故答案為9n+1.16、,.【解析】試題分析:當(dāng)點B的移動距離為時,∠C1BB1=60°,則∠ABC1=90°,根據(jù)有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當(dāng)點B的移動距離為時,D、B1兩點重合,根據(jù)對角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當(dāng)四邊形ABC1D是矩形時,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當(dāng)點B的移動距離為時,四邊形ABC1D1為矩形;當(dāng)四邊形ABC1D是菱形時,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當(dāng)點B的移動距離為時,四邊形ABC1D1為菱形.考點:1.菱形的判定;2.矩形的判定;3.平移的性質(zhì).三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標(biāo)為(,)或(,);②<t<.【解析】
(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),根據(jù)系數(shù)的關(guān)系,即可解答(2)先求出當(dāng)x=0時,C的坐標(biāo),設(shè)直線AC的解析式為y=px+q,把A,C的坐標(biāo)代入即可求出AC的解析式,過D作DG垂直拋物線對稱軸于點G,設(shè)D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點C作AC的垂線交拋物線于另一點P1,求出直線PC的解析式,再結(jié)合拋物線的解析式可求出P1,過點A作AC的垂線交拋物線于另一點P2,再利用A的坐標(biāo)求出P2,即可解答②觀察函數(shù)圖象與△ACQ為銳角三角形時的情況,即可解答【詳解】解:(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當(dāng)x=0時,y=﹣x2+2x+3=3,則C(0,3),設(shè)直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過D作DG垂直拋物線對稱軸于點G,設(shè)D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當(dāng)x=,DE+DF有最大值為;答圖1答圖2(3)①存在;如答圖2,過點C作AC的垂線交拋物線于另一點P1,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設(shè)為y=x+m,把C(0,3)代入得m=3,∴直線P1C的解析式為y=x+3,解方程組,解得或,則此時P1點坐標(biāo)為(,);過點A作AC的垂線交拋物線于另一點P2,直線AP2的解析式可設(shè)為y=x+n,把A(﹣1,0)代入得n=,∴直線PC的解析式為y=,解方程組,解得或,則此時P2點坐標(biāo)為(,),綜上所述,符合條件的點P的坐標(biāo)為(,)或(,);②<t<.【點睛】此題考查二次函數(shù)綜合題,解題關(guān)鍵在于把已知點代入解析式求值和作輔助線.18、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解析】
(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.【詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【點睛】本題是四邊形的綜合題,考查了線段垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)以及直角三角形斜邊上的中線性質(zhì)、平行四邊形的判定與性質(zhì)等知識;熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.19、(1).(2)公平.【解析】
試題分析:(1)首先根據(jù)題意結(jié)合概率公式可得答案;(2)首先根據(jù)(1)求得摸出兩張牌面圖形都是軸對稱圖形的有16種情況,若摸出兩張牌面圖形都是中心對稱圖形的有12種情況,繼而求得小明贏與小亮贏的概率,比較概率的大小,即可知這個游戲是否公平.試題解析:(1)共有4張牌,正面是中心對稱圖形的情況有3種,所以摸到正面是中心對稱圖形的紙牌的概率是;(2)列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共產(chǎn)生12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中兩張牌都是軸對稱圖形的有6種,∴P(兩張都是軸對稱圖形)=,因此這個游戲公平.考點:游戲公平性;軸對稱圖形;中心對稱圖形;概率公式;列表法與樹狀圖法.20、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】
(1)①把C點坐標(biāo)代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標(biāo);②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標(biāo)為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當(dāng)y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,∴拋物線的對稱軸為直線x=m,頂點D的坐標(biāo)為(m,4m2),當(dāng)y=0時,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),當(dāng)x=0時,y=﹣x2+2mx+3m2=3m2,則C(0,3m2),∵GF∥OC,∴即解得GF=2m2,∴DG=4m2﹣2m2=2m2,∵CB平分∠DCO,∴∠DCB=∠OCB,∵∠OCB=∠DGC,∴∠DCG=∠DGC,∴DC=DG,即m2+(4m2﹣3m2)2=4m4,∴而m>0,∴【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)和等腰三角形的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;靈活應(yīng)用等腰直角三角形的性質(zhì)進(jìn)行幾何計算;理解坐標(biāo)與圖形性質(zhì),記住兩點間的距離公式.21、(1)A(-4,0)和B(0,4);(2)或【解析】
(1)拋物線解析式配方后,確定出頂點C坐標(biāo),對于一次函數(shù)解析式,分別令x與y為0求出對應(yīng)y與x的值,確定出A與B坐標(biāo);(2)分m>0與m<0兩種情況求出m的范圍即可.【詳解】解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,∴拋物線頂點坐標(biāo)為C(-2,1),對于y=x+4,令x=0,得到y(tǒng)=4;y=0,得到x=-4,直線y=x+4與x軸、y軸交點坐標(biāo)分別為A(-4,0)和B(0,4);(2)把x=-4代入拋物線解析式得:y=4m+1,①當(dāng)m>0時,y=4m+1>0,說明拋物線的對稱軸左側(cè)總與線段AB有交點,∴只需要拋物線右側(cè)與線段AB無交點即可,如圖1所示,只需要當(dāng)x=0時,拋物線的函數(shù)值y=4m+1<4,即,則當(dāng)時,拋物線與線段AB只有一個交點;②當(dāng)m<0時,如圖2所示,只需y=4m+1≥0即可,解得:,綜上,當(dāng)或時,拋物線與線段AB只有一個交點.【點睛】此題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),以及二次函數(shù)圖象上點的坐標(biāo)特征,熟練掌握二次函數(shù)的性質(zhì)是解本題的關(guān)鍵.22、135°m+n【解析】試題分析:(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;(2)過點E作EG⊥CB交CB的延長線于點G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結(jié)合BC=n=3,可得GC=4,由長可得EC=,結(jié)合△ABD≌△AEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點共線時,EC最大=BE+BC=,此時BD最大=EC最大=;(4)由△ABD≌△AEC可得∠AEC=∠ABD,結(jié)合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.試題解析:(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,∴△EAC≌△BAD,∴∠BDA=∠ECA;(2)如下圖,過點E作EG⊥CB交CB的延長線于點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026廣西欽州市市直中學(xué)教師專場招聘112人備考題庫附答案詳解
- 2026內(nèi)蒙古敕勒川名醫(yī)堂中醫(yī)門診部招聘27人備考題庫及答案詳解參考
- 2026云南昆明市官渡區(qū)國有資產(chǎn)投資經(jīng)營有限公司項目制員工意向性招聘備考題庫完整答案詳解
- 2025浙江省律師協(xié)會秘書處招聘工作人員4人備考題庫及完整答案詳解1套
- 2026內(nèi)蒙古包頭市眼科醫(yī)院招聘控制數(shù)人員3人備考題庫參考答案詳解
- 2025廣東省低空經(jīng)濟(jì)產(chǎn)業(yè)發(fā)展有限公司招聘13人備考題庫及答案詳解參考
- 2026云南普洱市景東彝族自治縣文井鎮(zhèn)招聘政府專職消防員4人備考題庫有答案詳解
- 2026傳奇騰芳幼兒園公開招聘5人備考題庫及答案詳解一套
- 2025湖北武漢市蔡甸區(qū)公立學(xué)校招聘4人備考題庫附答案詳解
- 2026新疆阿克蘇人才發(fā)展集團(tuán)有限責(zé)任公司面向社會招聘合同制專任教師260人備考題庫及1套參考答案詳解
- 2026年藥店培訓(xùn)計劃試題及答案
- 2026春招:中國煙草真題及答案
- 物流鐵路專用線工程節(jié)能評估報告
- 2026河南省氣象部門招聘應(yīng)屆高校畢業(yè)生14人(第2號)參考題庫附答案
- 2026天津市南開區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位60人(含高層次人才)備考核心試題附答案解析
- 2025江蘇無錫市宜興市部分機(jī)關(guān)事業(yè)單位招聘編外人員40人(A類)備考筆試試題及答案解析
- 卵巢過度刺激征課件
- YS/T 903.1-2013銦廢料化學(xué)分析方法第1部分:銦量的測定EDTA滴定法
- FZ/T 70010-2006針織物平方米干燥重量的測定
- 工業(yè)廢水吸附
- 高血壓的血流動力學(xué)基礎(chǔ)課件
評論
0/150
提交評論