福建省漳平市中考數(shù)學(xué)真題分類(勾股定理)匯編難點解析試卷(詳解版)_第1頁
福建省漳平市中考數(shù)學(xué)真題分類(勾股定理)匯編難點解析試卷(詳解版)_第2頁
福建省漳平市中考數(shù)學(xué)真題分類(勾股定理)匯編難點解析試卷(詳解版)_第3頁
福建省漳平市中考數(shù)學(xué)真題分類(勾股定理)匯編難點解析試卷(詳解版)_第4頁
福建省漳平市中考數(shù)學(xué)真題分類(勾股定理)匯編難點解析試卷(詳解版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福建省漳平市中考數(shù)學(xué)真題分類(勾股定理)匯編難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、《九章算術(shù)》是我國古代數(shù)學(xué)名著,記載著這樣一個問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”大意是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?設(shè)蘆葦?shù)拈L度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)22、如圖,矩形中,的平分線交于點E,,垂足為F,連接.下列結(jié)論:①;②;③;④;⑤若,則.其中正確的結(jié)論有(

)A.2個 B.3個 C.4個 D.5個3、若直角三角形的三邊長分別為2,4,x,則x的可能值有(

)A.1個 B.2個 C.3個 D.4個4、如圖,正方形ABCD中,AB=12,將△ADE沿AE對折至△AEF,延長EF交BC于點G,G剛好是BC邊的中點,則ED的長是()A.2 B.3 C.4 D.55、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.456、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對角C處捕食,則它爬行的最短距離是()A. B. C. D.7、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于(

)A.29 B.32 C.36 D.45第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、《九章算術(shù)》中記載著這樣一個問題:已知甲、乙兩人同時從同一地點出發(fā),甲的速度為7步/分,乙的速度為3步/分,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇,那么相遇時,甲、乙各走了多遠(yuǎn)?解:如圖,設(shè)甲乙兩人出發(fā)后x分鐘相遇.根據(jù)勾股定理可列得方程為______.2、已知,在中,,,,則的面積為__.3、如圖,一艘輪船位于燈塔P的南偏東方向,距離燈塔50海里的A處,它沿正北方向航行一段時間后,到達(dá)位于燈塔P的北偏東方向上的B處,此時B處與燈塔P的距離為___________海里(結(jié)果保留根號).4、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.5、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個正方形.若四個陰影部分面積分別為,,,,則的值為______,的值為______.6、如圖,分別以此直角三角形的三邊為直徑在三角形的外部畫半圓,,,則_________.7、如圖,在中,,于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.8、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.三、解答題(7小題,每小題10分,共計70分)1、某海上有一小島,為了測量小島兩端A,B的距離,測量人員設(shè)計了一種測量方法,如圖,已知B是CD的中點,E是BA延長線上的一點,且∠CED=90°,測得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過點C作CF⊥AB交AB的延長線于點F,求值.2、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.3、勾股定理是人類最偉大的十個科學(xué)發(fā)現(xiàn)之一,在《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,漢代數(shù)學(xué)家趙爽為證明勾股定理創(chuàng)制的“趙爽弦圖”也流傳至今.迄今為止已有多種證明勾股定理的方法.下面是數(shù)學(xué)課上創(chuàng)新小組驗證過程的一部分.請認(rèn)真閱讀并根據(jù)他們的思路將后續(xù)的過程補充完整:將兩張全等的直角三角形紙片按圖所示擺放,其中,點在線段上,點在邊兩側(cè),試證明:.4、數(shù)學(xué)中,常對同一個量(圖形的面積、點的個數(shù)等)用兩種不同的方法計算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖2的方式拼成一個正方形.①用“算兩次”的方法計算圖2中陰影部分的面積:第一次列式為,第二次列式為,因為兩次所列算式表示的是同一個圖形的面積,所以可以得出等式;②在①中,如果,,請直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個邊長分別為,,的直角三角形和一個兩條直角邊都是的直角三角形拼成一個梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.5、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.6、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時施工,過點B作一直線m(在山的旁邊經(jīng)過),過點C作一直線l與m相交于D點,經(jīng)測量,,米,米.若施工隊每天挖100米,求施工隊幾天能挖完?7、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.-參考答案-一、單選題1、C【解析】【分析】首先設(shè)蘆葦長x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.2、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進(jìn)而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點F作FG⊥BC于點G,可得,從而得到,進(jìn)而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點F作FG⊥BC于點G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個.故選:D【考點】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識,熟練掌握相關(guān)知識點是解題的關(guān)鍵.3、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時要對x的取值進(jìn)行討論.解答:解:當(dāng)x為斜邊時,x2=22+42=20,所以x=2;當(dāng)4為斜邊時,x2=16-4=12,x=2.故選B.點評:本題考查了勾股定理的應(yīng)用,注意要分兩種情況討論.4、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對折至△AEF,則EF=DE,設(shè)DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點,∴BG=FG=,設(shè)DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長是4,答案選C.【考點】本題考查了正方形和全等三角形的綜合知識,根據(jù)勾股定理列方程是本題的解題關(guān)鍵.5、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點】本題考查了勾股定理,根據(jù)圖形推出四個正方形的關(guān)系是解決問題的關(guān)鍵.6、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點A、C之間的最短距離為線段AC的長.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長,AD=π,∴AC=,故選C.【考點】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.7、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點】本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運用勾股定理求出MC2和MB2是本題的難點,重點還是在于勾股定理的熟練掌握.二、填空題1、【解析】【分析】設(shè)甲、乙二人出發(fā)后相遇的時間為x,然后利用勾股定理列出方程即可.【詳解】解:設(shè)經(jīng)x秒二人在C處相遇,這時乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考點】本題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是從實際問題中抽象出直角三角形.2、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.3、.【解析】【分析】先作PC⊥AB于點C,然后利用勾股定理進(jìn)行求解即可.【詳解】解:如圖,作PC⊥AB于點C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案為:.【考點】此題主要考查了勾股定理的應(yīng)用-方向角問題,求三角形的邊或高的問題一般可以轉(zhuǎn)化為用勾股定理解決問題,解決的方法就是作高線.4、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關(guān)鍵.5、

24

0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個正方形,兩式相減可得:而故答案為:24,0【考點】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.6、【解析】【分析】根據(jù)題意設(shè)直角三角形的三邊為,分別表示出,得出,進(jìn)而即可求解.【詳解】解:設(shè)直角三角形的三邊為,如圖,,,,,S1=18π,S3=50π,故答案為:.【考點】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.7、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.8、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,掌握中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,關(guān)鍵是利用輔助線構(gòu)造三角形全等.三、解答題1、(1)33.4海里(2)【解析】【分析】(1)利用勾股定理求出CD,再根據(jù)斜邊的中線等于斜邊的一半求出BE,則AB可求;(2)設(shè)BF=x海里.利用勾股定理先表示出CF2,在Rt△CFE中,∠CFE=90°,利用勾股定理有CF2+EF2=CE2,即,解方程即可得解.(1)在△DCE中,∠CED=90°,DE=60海里,CE=80海里,由勾股定理可得(海里),∵B是CD的中點,∴(海里),∴AB=BE-AE=50-16.6=33.4(海里)答:小島兩端A、B的距離是33.4海里;(2)設(shè)BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=502-x2=2500-x2,在Rt△CFE中,∠CFE=90°,∴CF2+EF2=CE2,即,解得x=14,∴答:值為.【考點】本題主要考查了勾股定理的實際應(yīng)用的知識,在直角三角形中靈活利用勾股定理是解答本題的關(guān)鍵.2、m=1【解析】【分析】根據(jù)勾股數(shù)定義:滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù)可得:(3m+2)2+(4m+8)2=(5m+8)2,再解方程即可.【詳解】解:m>0,3m+2,4m+8,5m+8是一組勾股數(shù),(3m+2)2+(4m+8)2=(5m+8)2,解得:m=1.【考點】此題主要考查了勾股數(shù),關(guān)鍵是掌握勾股數(shù)定義.3、見解析.【解析】【分析】首先連結(jié),作延長線于,則,根據(jù),易證,再根據(jù),,兩者相等,整理即可得證.【詳解】證明:連結(jié),作延長線于,則即,∴∴即有:∴【考點】本題考查了勾股定理的證明,用兩種方法表示出四邊形ADFB的面積是解本題的關(guān)鍵.4、(1)①,,;或,,;②9;(2)【解析】【分析】(1)①第一次求解陰影部分的邊長,再計算面積,第二次利用大的正方形的面積減去四個長方形的面積,從而可建立等式;②直接利用公式,再整體代入求值即可;(2)第一次利用梯形的面積公式計算,第二次利用圖形的面積和計算,從而得到公式,再整理即可得到答案.【詳解】解:(1)因為小正方形的邊長為:所以第一次計算的面積為:,第二次計算的面積為:,所以:;或,,②∵,∴(3)第一次利用梯形的面積公式圖形面積為:第二次利用圖形的面積和計算為:整理得:【考點】本題考查的是利用幾何圖形的面積推導(dǎo)代數(shù)公式,掌握等面積法推導(dǎo)兩個完全平方公式之間的關(guān)系,推導(dǎo)勾股定理是解題的關(guān)鍵.5、(1)詳見解析;(2)S四邊形ABCD=56【解析】【分析】(1)由等角的余角相等可得∠DAC=∠ABE,再根據(jù)題意可得Rt△BAE≌Rt△ADC,即可證;(2)根據(jù)勾股定理算出AC,由全等可得BE=AC,再算出△ACD的面積和△ABC的面積相加即可.【詳解】解:(1)∵BE⊥

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論