版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆安徽省十校中考三模數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.-的絕對值是()A.-4 B. C.4 D.0.42.如圖,已知雙曲線經過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(,4),則△AOC的面積為A.12 B.9 C.6 D.43.如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.
或
B.
或
C.
或D.4.如圖,在?ABCD中,AB=1,AC=4,對角線AC與BD相交于點O,點E是BC的中點,連接AE交BD于點F.若AC⊥AB,則FD的長為()A.2 B.3 C.4 D.65.這個數(shù)是()A.整數(shù) B.分數(shù) C.有理數(shù) D.無理數(shù)6.如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米7.如圖,能判定EB∥AC的條件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC8.某市2017年國內生產總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關系是()A. B.C. D.9.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山10.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.12.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.13.某種商品每件進價為10元,調查表明:在某段時間內若以每件x元(10≤x≤20且x為整數(shù))出售,可賣出(20﹣x)件,若使利潤最大,則每件商品的售價應為_____元.14.用正三角形、正四邊形和正六邊形按如圖所示的規(guī)律拼圖案,即從第二個圖案開始,每個圖案中正三角形的個數(shù)都比上一個圖案中正三角形的個數(shù)多4個,則第n個圖案中正三角形的個數(shù)為(用含n的代數(shù)式表示).15.已知點A(a,y1)、B(b,y2)在反比例函數(shù)y=的圖象上,如果a<b<0,那么y1與y2的大小關系是:y1__y2;16.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.三、解答題(共8題,共72分)17.(8分)為了鞏固全國文明城市建設成果,突出城市品質的提升,近年來,某市積極落實節(jié)能減排政策,推行綠色建筑,據(jù)統(tǒng)計,該市2014年的綠色建筑面積約為950萬平方米,2016年達到了1862萬平方米.若2015年、2016年的綠色建筑面積按相同的增長率逐年遞增,請解答下列問題:求這兩年該市推行綠色建筑面積的年平均增長率;2017年該市計劃推行綠色建筑面積達到2400萬平方米.如果2017年仍保持相同的年平均增長率,請你預測2017年該市能否完成計劃目標.18.(8分)某文教店老板到批發(fā)市場選購A、B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.求A、B兩種品牌套裝每套進價分別為多少元?若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?19.(8分)如圖①是一副創(chuàng)意卡通圓規(guī),圖②是其平面示意圖,OA是支撐臂,OB是旋轉臂.使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉作出圓.已知OA=OB=10cm.(1)當∠AOB=18°時,求所作圓的半徑(結果精確到0.01cm);(2)保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度(結果精確到0.01cm,參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學計算器).20.(8分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?21.(8分)如圖,已知在中,,是的平分線.(1)作一個使它經過兩點,且圓心在邊上;(不寫作法,保留作圖痕跡)(2)判斷直線與的位置關系,并說明理由.22.(10分)如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點.(1)若點的橫坐標為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.23.(12分)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,連接DE.若DE:AC=3:5,求的值.24.如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
直接用絕對值的意義求解.【詳解】?的絕對值是.故選B.【點睛】此題是絕對值題,掌握絕對值的意義是解本題的關鍵.2、B【解析】∵點,是中點∴點坐標∵在雙曲線上,代入可得∴∵點在直角邊上,而直線邊與軸垂直∴點的橫坐標為-6又∵點在雙曲線∴點坐標為∴從而,故選B3、B【解析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經過點時,拋物線的開口最小,取得最大值拋物線經過△ABC區(qū)域(包括邊界),的取值范圍是:當時,拋物線經過點時,拋物線的開口最小,取得最小值拋物線經過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點睛:二次函數(shù)二次項系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.4、C【解析】
利用平行四邊形的性質得出△ADF∽△EBF,得出=,再根據(jù)勾股定理求出BO的長,進而得出答案.【詳解】解:∵在□ABCD中,對角線AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點,∴==,∴BF=2,F(xiàn)D=4.故選C.【點睛】本題考查了勾股定理與相似三角形的判定與性質,解題的關鍵是熟練的掌握勾股定理與相似三角形的判定與性質.5、D【解析】
由于圓周率π是一個無限不循環(huán)的小數(shù),由此即可求解.【詳解】解:實數(shù)π是一個無限不循環(huán)的小數(shù).所以是無理數(shù).
故選D.【點睛】本題主要考查無理數(shù)的概念,π是常見的一種無理數(shù)的形式,比較簡單.6、A【解析】
作BM⊥ED交ED的延長線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構建方程即可解決問題.【詳解】作BM⊥ED交ED的延長線于M,CN⊥DM于N.在Rt△CDN中,∵,設CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.7、C【解析】
在復雜的圖形中具有相等關系的兩角首先要判斷它們是否是同位角或內錯角,被判斷平行的兩直線是否由“三線八角”而產生的被截直線.【詳解】A、∠C=∠ABE不能判斷出EB∥AC,故本選項錯誤;B、∠A=∠EBD不能判斷出EB∥AC,故本選項錯誤;C、∠A=∠ABE,根據(jù)內錯角相等,兩直線平行,可以得出EB∥AC,故本選項正確;D、∠C=∠ABC只能判斷出AB=AC,不能判斷出EB∥AC,故本選項錯誤.故選C.【點睛】本題考查了平行線的判定,正確識別“三線八角”中的同位角、內錯角、同旁內角是正確答題的關鍵,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行.8、D【解析】分析:根據(jù)增長率為12%,7%,可表示出2017年的國內生產總值,2018年的國內生產總值;求2年的增長率,可用2016年的國內生產總值表示出2018年的國內生產總值,讓2018年的國內生產總值相等即可求得所列方程.詳解:設2016年的國內生產總值為1,∵2017年國內生產總值(GDP)比2016年增長了12%,∴2017年的國內生產總值為1+12%;∵2018年比2017年增長7%,∴2018年的國內生產總值為(1+12%)(1+7%),∵這兩年GDP年平均增長率為x%,∴2018年的國內生產總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點睛:考查了由實際問題列一元二次方程的知識,當必須的量沒有時,應設其為1;注意2018年的國內生產總值是在2017年的國內生產總值的基礎上增加的,需先算出2016年的國內生產總值.9、A【解析】
根據(jù)兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.10、B【解析】
根據(jù)最小的正整數(shù)是1解答即可.【詳解】最小的正整數(shù)是1.故選B.【點睛】本題考查了有理數(shù)的認識,關鍵是根據(jù)最小的正整數(shù)是1解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
在AB上取BN=BE,連接EN,根據(jù)已知及正方形的性質利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【點睛】本題考查了正方形的性質、全等三角形的判定和性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考常考題型.12、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.13、1【解析】
本題是營銷問題,基本等量關系:利潤=每件利潤×銷售量,每件利潤=每件售價﹣每件進價.再根據(jù)所列二次函數(shù)求最大值.【詳解】解:設利潤為w元,則w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴當x=1時,二次函數(shù)有最大值25,故答案是:1.【點睛】本題考查了二次函數(shù)的應用,此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.14、4n+1【解析】
分析可知規(guī)律是每個圖案中正三角形的個數(shù)都比上一個圖案中正三角形的個數(shù)多4個.【詳解】解:第一個圖案正三角形個數(shù)為6=1+4;第二個圖案正三角形個數(shù)為1+4+4=1+1×4;第三個圖案正三角形個數(shù)為1+1×4+4=1+3×4;…;第n個圖案正三角形個數(shù)為1+(n﹣1)×4+4=1+4n=4n+1.故答案為4n+1.考點:規(guī)律型:圖形的變化類.15、>【解析】
根據(jù)反比例函數(shù)的性質求解.【詳解】反比例函數(shù)y=的圖象分布在第一、三象限,在每一象限y隨x的增大而減小,而a<b<0,所以y1>y2故答案為:>【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.也考查了反比例函數(shù)的性質.16、4cm.【解析】
由題意知OD⊥AB,交AB于點C,由垂徑定理可得出BC的長,在Rt△OBC中,根據(jù)勾股定理求出OC的長,由CD=OD-OC即可得出結論.【詳解】由題意知OD⊥AB,交AB于點E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【點睛】本題考查的是垂徑定理的應用,根據(jù)題意在直角三角形運用勾股定理列出方程是解答此題的關鍵.三、解答題(共8題,共72分)17、(1)這兩年該市推行綠色建筑面積的年平均增長率為40%;(2)如果2017年仍保持相同的年平均增長率,2017年該市能完成計劃目標.【解析】試題分析:(1)設這兩年該市推行綠色建筑面積的年平均增長率x,根據(jù)2014年的綠色建筑面積約為700萬平方米和2016年達到了1183萬平方米,列出方程求解即可;(2)根據(jù)(1)求出的增長率問題,先求出預測2017年綠色建筑面積,再與計劃推行綠色建筑面積達到1500萬平方米進行比較,即可得出答案.試題解析:(1)設這兩年該市推行綠色建筑面積的年平均增長率為x,根據(jù)題意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣2.3(舍去),答:這兩年該市推行綠色建筑面積的年平均增長率為30%;(2)根據(jù)題意得:1183×(1+30%)=1537.9(萬平方米),∵1537.9>1500,∴2017年該市能完成計劃目標.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件和增長率問題的數(shù)量關系,列出方程進行求解.18、(1)A種品牌套裝每套進價為1元,B種品牌套裝每套進價為7.5元;(2)最少購進A品牌工具套裝2套.【解析】試題分析:(1)利用兩種套裝的套數(shù)作為等量關系列方程求解.(2)利用總獲利大于等于120,解不等式.試題解析:(1)解:設B種品牌套裝每套進價為x元,則A種品牌套裝每套進價為(x+2.5)元.根據(jù)題意得:=2×,解得:x=7.5,經檢驗,x=7.5為分式方程的解,∴x+2.5=1.答:A種品牌套裝每套進價為1元,B種品牌套裝每套進價為7.5元.(2)解:設購進A品牌工具套裝a套,則購進B品牌工具套裝(2a+4)套,根據(jù)題意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,解得:a>16,∵a為正整數(shù),∴a取最小值2.答:最少購進A品牌工具套裝2套.點睛:分式方程應用題:一設,一般題里有兩個有關聯(lián)的未知量,先設出一個未知量,并找出兩個未知量的聯(lián)系;二列,找等量關系,列方程,這個時候應該注意的是和差分倍關系:三解,正確解分式方程;四驗,應用題要雙檢驗;五答,應用題要寫答.19、(1)3.13cm(2)鉛筆芯折斷部分的長度約是0.98cm【解析】試題分析:(1)根據(jù)題意作輔助線OC⊥AB于點C,根據(jù)OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度數(shù),從而可以求得AB的長;(2)由題意可知,作出的圓與(1)中所作圓的大小相等,則AE=AB,然后作出相應的輔助線,畫出圖形,從而可以求得BE的長,本題得以解決.試題解析:(1)作OC⊥AB于點C,如右圖2所示,由題意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB?sin9°≈2×10×0.1564≈3.13cm,即所作圓的半徑約為3.13cm;(2)作AD⊥OB于點D,作AE=AB,如下圖3所示,∵保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,∴折斷的部分為BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB?sin9°≈2×3.13×0.1564≈0.98cm,即鉛筆芯折斷部分的長度是0.98cm.考點:解直角三角形的應用;探究型.20、20千米【解析】
由勾股定理兩直角邊的平方和等于斜邊的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜邊相等兩次利用勾股定理得到AD2+AE2=BE2+BC2,設AE為x,則BE=10﹣x,將DA=8,CB=2代入關系式即可求得.【詳解】解:設基地E應建在離A站x千米的地方.則BE=(50﹣x)千米在Rt△ADE中,根據(jù)勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根據(jù)勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D兩村到E點的距離相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E應建在離A站20千米的地方.考點:勾股定理的應用.21、(1)見解析;(2)與相切,理由見解析.【解析】
(1)作出AD的垂直平分線,交AB于點O,進而利用AO為半徑求出即可;
(2)利用半徑相等結合角平分線的性質得出OD∥AC,進而求出OD⊥BC,進而得出答案.【詳解】(1)①分別以為圓心,大于的長為半徑作弧,兩弧相交于點和,②作直線,與相交于點,③以為圓心,為半徑作圓,如圖即為所作;(2)與相切,理由如下:連接OD,為半徑,,是等腰三角形,,平分,,,,,,,為半徑,與相切.【點睛】本題主要考查了切線的判定以及線段垂直平分線的作法與性質等知識,掌握切線的判定方法是解題關鍵.22、(1);(2)不能成為平行四邊形,理由見解析【解析】
(1)將點B坐標代入一次函數(shù)上可得出點B的坐標,由點B的坐標,利用待定系數(shù)法可求出反比例函數(shù)解析式,根據(jù)點的坐標為,可以判斷出,再由點P的橫坐標可得出點P的坐標是,結合PD∥x軸可得出點D的坐標,再利用三角形的面積公式即可用含的式子表示出△MPD的面積;
(2)當P為BM的中點時,利用中點坐標公式可得出點P的坐標,結合PD∥x軸可得出點D的坐標,由折疊的性質可得出直線MN的解析式,利用一次函數(shù)圖象上點的坐標特征可得出點C的坐標,由點P,C,D的坐標可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點在直線上,∴.∵點在的圖像上,∴,∴.設,則.∵∴.記的面積為,∴.(2)當點為中點時,其坐標為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數(shù)表達式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、待定系數(shù)法求反比例函數(shù)解析式、反比例函數(shù)圖象上點的坐標特征、三角形的面積、折疊的性質以及平行四邊形的判定,解題的關鍵是:(1)利用一次(反比例)函數(shù)圖象上點的坐標特征,找出點P,M,D的坐標;(2)利用平行四邊形的對角線互相平分,找出四邊形BDMC不能成為平行四邊形.23、【解析】
根據(jù)翻折的性質可得∠BAC=∠EAC,再根據(jù)矩形的對邊平行可得AB∥CD,根據(jù)兩直線平行,內錯角相等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 碧桂園成本部主管面試題庫含答案
- 電力系統(tǒng)工程師筆試題及模擬試卷含答案
- 2025年城市災害防治體系建設可行性研究報告
- 2025年數(shù)字廣告投放平臺優(yōu)化項目可行性研究報告
- 2025年空間信息與遙感技術應用可行性研究報告
- 2025年數(shù)字化個人助理開發(fā)可行性研究報告
- 2025年可持續(xù)固廢處理與利用項目可行性研究報告
- 2025年信息安全技術應用項目可行性研究報告
- 2026年鶴崗師范高等專科學校單招職業(yè)技能測試題庫及完整答案詳解1套
- 2026年河北能源職業(yè)技術學院單招職業(yè)技能考試題庫及答案詳解1套
- 初三勵志、拼搏主題班會課件
- Cuk斬波完整版本
- GB/T 3521-2023石墨化學分析方法
- 一年級數(shù)學重疊問題練習題
- 三維動畫及特效制作智慧樹知到課后章節(jié)答案2023年下吉林電子信息職業(yè)技術學院
- 胰腺囊腫的護理查房
- 臨床醫(yī)學概論常見癥狀課件
- 物業(yè)管理理論實務教材
- 仁川國際機場
- 全檢員考試試題
- 光刻和刻蝕工藝
評論
0/150
提交評論