版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省東臺市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(
)A.10 B.8 C.6或10 D.8或102、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點,沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F,已知EF=,則BC的長是()A. B.3 C.3 D.33、如圖,三角形紙片ABC,點D是BC邊上一點,連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點G,連接BE交AD于點F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點F到BC的距離為()A. B. C. D.4、如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)的點F處,連接CF,則CF的長為()A. B. C. D.5、如圖,將直角三角形紙片沿AD折疊,使點B落在AC延長線上的點E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.6、如圖,△ABC中,,以其三邊分別向外側(cè)作正方形,然后將整個圖形放置于如圖所示的長方形中,若要求圖中兩個陰影部分面積之和,則只需知道(
)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積7、下列各組數(shù)據(jù)為三角形的三邊,能構(gòu)成直角三角形的是(
)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,5第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______2、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是.3、在繼承和發(fā)揚紅色學(xué)校光榮傳統(tǒng),與時俱進,把育英學(xué)校建成一所文明的、受社會尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.4、如圖,已知四邊形中,,則四邊形的面積等于________.5、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”,當(dāng),時,陰影部分的面積為________.6、在一棵樹的5米高B處有兩個猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計算,如果兩只猴子所經(jīng)過的距離相等,則這棵樹高_______米.7、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.8、已知a、b、c是一個三角形的三邊長,如果滿足,則這個三角形的形狀是_______.三、解答題(7小題,每小題10分,共計70分)1、如圖,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,點D為BC的中點,.(1)求證:△ABC≌△DEB.(2)連結(jié)AE,若BC=4,直接寫出AE的長.2、在△ABC中,,AB=5cm,AC=3cm,動點P從點B出發(fā),沿射線BC以1cm/s的速度移動,設(shè)運動的時間為t秒,當(dāng)△ABP為直角三角形時,求t的值.3、如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,,,于A,于B,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等,求E應(yīng)建在距A多遠處?4、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時施工,過點B作一直線m(在山的旁邊經(jīng)過),過點C作一直線l與m相交于D點,經(jīng)測量,,米,米.若施工隊每天挖100米,求施工隊幾天能挖完?5、如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長均為1.(1)請在所給網(wǎng)格中畫一個邊長分別為,,的三角形;(2)此三角形的面積是.6、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.7、如圖,點B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長.-參考答案-一、單選題1、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.2、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對稱軸,對稱點的連線被對稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長可求,再利用勾股定理即可求出BC的長.【詳解】解:AB=AC,,故選B.【考點】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運用,求出∠AFB=90°是解題的關(guān)鍵.3、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點F到BC的距離為.故選:C【考點】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.4、C【解析】【分析】連接BF,(見詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點,可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì),對應(yīng)點的連線被折痕垂直平分.5、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長,利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計算公式是解題的關(guān)鍵.6、D【解析】【分析】如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠正確作出輔助線,構(gòu)造全等三角形.7、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進行判斷.【詳解】A、42+72≠82,故不能構(gòu)成直角三角形;B、22+22≠22,故不能構(gòu)成直角三角形;C、2+2=4,故不能構(gòu)成三角形,不能構(gòu)成直角三角形;D、52+122=132,故能構(gòu)成直角三角形,故選D.【考點】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.二、填空題1、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.2、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點C落在AB邊的C′點,∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點:折疊的性質(zhì),勾股定理點評:折疊的性質(zhì):折疊前后兩圖形全等,即對應(yīng)角相等,對應(yīng)線段相等,對應(yīng)點的連線段被折痕垂直平分.3、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.4、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.5、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點】本題考查的是勾股定理、半圓面積計算,掌握勾股定理和半圓面積公式是解題的關(guān)鍵.6、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點】本題考查了勾股定理在實際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.7、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.8、直角三角形【解析】【分析】根據(jù)絕對值、完全平方數(shù)和算數(shù)平方根的非負性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點】本題主要考查了非負數(shù)的性質(zhì)和勾股定理的逆定理,運用非負數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)【解析】【分析】(1)根據(jù)平行可得∠DBE=90°,再由HL定理證明直角三角形全等即可;(2)構(gòu)造,利用矩形性質(zhì)和勾股定理即可求出AE長.【詳解】(1)∵AC∥BE,∴∠C+∠DBE=180°.∴∠DBE=180°-∠C=180°-90°=90°.∴△ABC和△DEB都是直角三角形.∵點D為BC的中點,,∴AC=DB.
∵AB=DE,∴Rt△ABC≌Rt△DEB(HL).(2).過程如下:連接AE、過A點作AH⊥BE,∵∠C=90°,∠DBE=90°.∴,,∴AH=BC=4,,∴,在中,.【考點】本題主要考查了直角三角形全等的判定和勾股定理解三角形,解題關(guān)鍵是構(gòu)造直角三角形,利用用平行線間的距離處處相等得線段AH=BC,從而利用勾股定理求AE.2、當(dāng)△ABP為直角三角形時,t=4或.【解析】【分析】當(dāng)△ABP為直角三角形時,分兩種情況:①當(dāng)∠APB為直角時,②當(dāng)∠BAP為直角時,分別求出此時t的值即可.【詳解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由題意得:BP=tcm.,①當(dāng)∠APB為直角時,如圖①,點P與點C重合,BP=BC=4cm,∴t=4;②當(dāng)∠BAP為直角時,如圖②,BP=tcm.CP=(t-4)cm,AC=3cm,在Rt△ACP中,,在Rt△BAP中,,即,解得,答:當(dāng)△ABP為直角三角形時,t=4或.【考點】本題考查了勾股定理以及直角三角形的知識,解答本題的關(guān)鍵是掌握勾股定理的應(yīng)用,以及分類討論,否則會出現(xiàn)漏解.3、E應(yīng)建在距A點15km處【解析】【分析】設(shè),則,根據(jù)勾股定理求得和,再根據(jù)列式計算即可;【詳解】設(shè),則,由勾股定理得:在中,,在中,,由題意可知:,所以:,解得:.所以,E應(yīng)建在距A點15km處.【考點】本題主要考查了勾股定理的實際應(yīng)用,準確計算是解題的關(guān)鍵.4、施工隊6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安陽市公安機關(guān)招聘留置看護輔警46人筆試備考題庫附答案
- 2025天津西青南開敬業(yè)學(xué)校招聘備考題庫附答案
- 2025年西安市涇河新城招聘緊缺人才通知(138人)筆試備考試題附答案
- 2025廣西崇左憑祥國家重點開發(fā)開放試驗區(qū)管理委員會招聘工作人員1人考試題庫附答案
- 2025年哈爾濱通河縣公益性崗位招聘96人備考題庫附答案
- 2025年七臺河桃山區(qū)招聘社區(qū)工作者27人考試模擬卷附答案
- AI賦能兒童發(fā)展:教育科技視角下的應(yīng)用與實踐
- 2026河南濮陽市城鄉(xiāng)一體化示范區(qū)直機關(guān)事業(yè)單位招聘7人筆試備考題庫及答案解析
- 2026北京市某政府單位熱線值守招聘需求筆試備考題庫及答案解析
- 2025秋人教版道德與法治八年級上冊11.1黨和人民信賴的英雄軍隊課件
- 【一例擴張型心肌病合并心力衰竭患者的個案護理】5400字【論文】
- 四川橋梁工程系梁專項施工方案
- DB32T 3695-2019房屋面積測算技術(shù)規(guī)程
- 貴州省納雍縣水東鄉(xiāng)水東鉬鎳礦采礦權(quán)評估報告
- GB 8270-2014食品安全國家標(biāo)準食品添加劑甜菊糖苷
- 2023年杭州臨平環(huán)境科技有限公司招聘筆試題庫及答案解析
- 易制毒化學(xué)品日常管理有關(guān)問題權(quán)威解釋和答疑
- LF爐機械設(shè)備安裝施工方案
- 湖北省高等教育自學(xué)考試
- 企業(yè)三級安全生產(chǎn)標(biāo)準化評定表(新版)
- 中心衛(wèi)生院關(guān)于成立按病種分值付費(DIP)工作領(lǐng)導(dǎo)小組及制度的通知
評論
0/150
提交評論