七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯(cuò)題檢測試卷含解析_第1頁
七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯(cuò)題檢測試卷含解析_第2頁
七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯(cuò)題檢測試卷含解析_第3頁
七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯(cuò)題檢測試卷含解析_第4頁
七年級數(shù)學(xué)下學(xué)期相期末壓軸題易錯(cuò)題檢測試卷含解析_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、解答題1.如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),邊長為2的正方形ABCD(點(diǎn)D與點(diǎn)O重合)和邊長為4的正方形EFGH的邊CO和GH都在x軸上,且點(diǎn)H坐標(biāo)為(7,0).正方形ABCD以3個(gè)單位長度/秒的速度沿著x軸向右運(yùn)動,記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運(yùn)動時(shí)間為t秒,且t<4.(1)點(diǎn)F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運(yùn)動的同時(shí),動點(diǎn)P在線段FE上,以1個(gè)單位長度/秒的速度從F到E運(yùn)動.連接AP,AE.①求t為何值時(shí),AP所在直線垂直于x軸;②求t為何值時(shí),S=S△APE.解析:(1)(3,4);(2)①t=時(shí),AP所在直線垂直于x軸;②當(dāng)t為或時(shí),S=S△APE.【分析】(1)根據(jù)直角坐標(biāo)系得出點(diǎn)F的坐標(biāo)即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標(biāo)系可得:F坐標(biāo)為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時(shí),AP所在直線垂直于x軸;②由題意知,OH=7,所以當(dāng)時(shí),點(diǎn)D與點(diǎn)H重合,所以要分以下兩種情況討論:情況一:當(dāng)時(shí),GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當(dāng)時(shí),如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當(dāng)t為或時(shí),S=S△APE.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中點(diǎn)的移動,一元一次方程的應(yīng)用等問題,理解題意,分類討論是解題關(guān)鍵.2.問題情境:在平面直角坐標(biāo)系xOy中有不重合的兩點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2),小明在學(xué)習(xí)中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1﹣x2|;(應(yīng)用):(1)若點(diǎn)A(﹣1,1)、B(2,1),則AB∥x軸,AB的長度為.(2)若點(diǎn)C(1,0),且CD∥y軸,且CD=2,則點(diǎn)D的坐標(biāo)為.(拓展):我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn)M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點(diǎn)M(﹣1,1)與點(diǎn)N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點(diǎn)Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.解析:【應(yīng)用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應(yīng)用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1?x2|,代入數(shù)據(jù)即可得出結(jié)論;(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點(diǎn)之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;(2)根據(jù)兩點(diǎn)之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對值符號的一元一次方程,解之即可得出結(jié)論;(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點(diǎn)之間的折線距離公式即可得出結(jié)論;【詳解】(應(yīng)用):(1)AB的長度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點(diǎn)D的坐標(biāo)為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當(dāng)點(diǎn)Q的坐標(biāo)為(2,0)時(shí),d(P,Q)=|3﹣2|+|3﹣0|=4;當(dāng)點(diǎn)Q的坐標(biāo)為(﹣2,0)時(shí),d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點(diǎn)睛】本題是三角形綜合題目,考查了新定義、兩點(diǎn)間的距離公式、三角形面積等知識,讀懂題意并熟練運(yùn)用兩點(diǎn)間的距離及兩點(diǎn)之間的折線距離公式是解題的關(guān)鍵.3.如圖,在長方形ABCD中,AB=8cm,BC=6cm,點(diǎn)E是CD邊上的一點(diǎn),且DE=2cm,動點(diǎn)P從A點(diǎn)出發(fā),以2cm/s的速度沿A→B→C→E運(yùn)動,最終到達(dá)點(diǎn)E.設(shè)點(diǎn)P運(yùn)動的時(shí)間為t秒.(1)請以A點(diǎn)為原點(diǎn),AB所在直線為x軸,1cm為單位長度,建立一個(gè)平面直角坐標(biāo)系,并用t表示出點(diǎn)P在不同線段上的坐標(biāo).(2)在(1)相同條件得到的結(jié)論下,是否存在P點(diǎn)使△APE的面積等于20cm2時(shí),若存在,請求出P點(diǎn)坐標(biāo);若不存在,請說明理由.解析:(1)建立直角坐標(biāo)系見解析,當(dāng)0<t≤4時(shí),即當(dāng)點(diǎn)P在線段AB上時(shí),其坐標(biāo)為:P(2t,0),當(dāng)4<t≤7時(shí),即當(dāng)點(diǎn)P在線段BC上時(shí),其坐標(biāo)為:P(8,2t﹣8),當(dāng)7<t≤10時(shí),即當(dāng)點(diǎn)P在線段CE上時(shí),其坐標(biāo)為:P(22﹣2t,6);(2)存在,當(dāng)點(diǎn)P的坐標(biāo)分別為:P(,0)或P(8,4)時(shí),△APE的面積等于.【分析】(1)建立平面直角坐標(biāo)系,根據(jù)點(diǎn)P的運(yùn)動速度分別求出點(diǎn)P在線段AB,BC,CE上的坐標(biāo);(2)根據(jù)(1)中得到的點(diǎn)P的坐標(biāo)以及,分別列出三個(gè)方程并解出此時(shí)t的值再進(jìn)行討論.【詳解】(1)正確畫出直角坐標(biāo)系如下:當(dāng)0<t≤4時(shí),點(diǎn)P在線段AB上,此時(shí)P點(diǎn)的橫坐標(biāo)為,其縱坐標(biāo)為0;∴此時(shí)P點(diǎn)的坐標(biāo)為:P(2t,0);同理:當(dāng)4<t≤7時(shí),點(diǎn)P在線段BC上,此時(shí)P點(diǎn)的坐標(biāo)為:P(8,2t﹣8);當(dāng)7<t≤10時(shí),點(diǎn)P在線段CE上,此時(shí)P點(diǎn)的坐標(biāo)為:P(22﹣2t,6).(2)存在,①如圖1,當(dāng)0<t≤4時(shí),點(diǎn)P在線段AB上,,解得:t(s);∴P點(diǎn)的坐標(biāo)為:P(,0).②如圖2,當(dāng)4<t≤7時(shí),點(diǎn)P在線段BC上,;∴;解得:t=6(s);∴點(diǎn)P的坐標(biāo)為:P(8,4).③如圖3,當(dāng)7<t≤10時(shí),點(diǎn)P在線段CE上,;解得:t(s);∵7,∴t(應(yīng)舍去),綜上所述:當(dāng)P點(diǎn)的坐標(biāo)為:P(,0)或P(8,4)時(shí),△APE的面積等于.【點(diǎn)睛】本題考查了三角形的面積的計(jì)算公式,,在本題計(jì)算的過程中根據(jù)動點(diǎn)的坐標(biāo)正確地求出三角形的底邊長度和高是解題的關(guān)鍵.4.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過平移后得到四邊形,點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為.(1)請直接寫點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請說明理由.解析:(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點(diǎn)的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長為3,高為2,即可求出面積;(3)設(shè)點(diǎn)的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個(gè)單位,向上平移一個(gè)單位;∵,,,∴;(2)如圖,延長交x軸于點(diǎn)E,過點(diǎn)做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點(diǎn)的坐標(biāo)為,∵,,∴,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.5.在平面直角坐標(biāo)系中,如圖正方形的頂點(diǎn),坐標(biāo)分別為,,點(diǎn),坐標(biāo)分別為,,且,以為邊作正方形.設(shè)正方形與正方形重疊部分面積為.(1)①當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為______;②當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為______.(2)請用含的式子表示,并直接寫出的取值范圍.解析:(1)①1;②;(2).【分析】(1)①②根據(jù)點(diǎn)F的坐標(biāo)構(gòu)建方程即可解決問題.(2)分四種情形:①如圖1中,當(dāng)1≤m≤2時(shí),重疊部分是四邊形BEGN.②如圖2中,當(dāng)0<m<1時(shí),重疊部分是正方形EFGH.③如圖3中,-1<m<時(shí),重疊部分是矩形AEHN.④如圖4中,當(dāng)-≤m<0時(shí),重疊部分是正方形EFGH.分別求解即可解決問題.【詳解】解:(1)①當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),由題意3m=3,∴m=1.②當(dāng)點(diǎn)F與點(diǎn)A重合時(shí),由題意3m=-1,∴m=,故答案為1,.(2)①當(dāng)時(shí),如圖1.,..②當(dāng)時(shí),如圖2...③當(dāng)時(shí),如圖3.,.④當(dāng)時(shí),如圖4...綜上,.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),平移變換,四邊形的面積等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,屬于中考??碱}型.6.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點(diǎn).在平面直角坐標(biāo)系中,以任意兩點(diǎn)P(x1,y1)、Q(x2,y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為(,).(1)則A點(diǎn)的坐標(biāo)為;點(diǎn)C的坐標(biāo)為,D點(diǎn)的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動點(diǎn)P、Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個(gè)單位長度每秒的速度勻速移動,Q點(diǎn)從O點(diǎn)出發(fā)以2個(gè)單位長度每秒的速度沿y軸正方向移動,點(diǎn)Q到達(dá)A點(diǎn)整個(gè)運(yùn)動隨之結(jié)束.設(shè)運(yùn)動時(shí)間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點(diǎn)F是線段AC上一點(diǎn),滿足∠FOC=∠FCO,點(diǎn)G是第二象限中一點(diǎn),連OG,使得∠AOG=∠AOF.點(diǎn)E是線段OA上一動點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.解析:(1),,;(2)存在,;(3)【分析】(1)根據(jù)絕對值和算術(shù)平方根的非負(fù)性,求得a,b的值,得出點(diǎn)A,C的坐標(biāo),再運(yùn)用中點(diǎn)公式求出點(diǎn)D的坐標(biāo);(2)根據(jù)題意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列方程求解即可;(3)過點(diǎn)H作HP∥AC交x軸于點(diǎn)P,先證明OG∥AC,再根據(jù)角的和差關(guān)系以及平行線性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【詳解】解:(1),,,,,,,設(shè),為線段的中點(diǎn).,,,故答案為:,,;(2)存在,.由條件可知:點(diǎn)從點(diǎn)運(yùn)動到點(diǎn)需要時(shí)間為2秒,點(diǎn)從點(diǎn)運(yùn)動到點(diǎn)需要時(shí)間2秒,,點(diǎn)在線段上,,,,,,,,,.(3)如圖2,,,,,,,,如圖,過點(diǎn)作交軸于點(diǎn),則,,,,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形面積,非負(fù)數(shù)的性質(zhì),中點(diǎn)坐標(biāo)公式等,是一道三角形綜合題,解題關(guān)鍵是學(xué)會添加輔助線,運(yùn)用轉(zhuǎn)化的思想思考問題.7.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).8.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過點(diǎn)作交的延長線于點(diǎn),且,求的度數(shù).解析:(1)見解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過點(diǎn)E作,延長DC至Q,過點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.9.已知,如圖:射線分別與直線、相交于、兩點(diǎn),的角平分線與直線相交于點(diǎn),射線交于點(diǎn),設(shè),且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點(diǎn)是射線上任意一點(diǎn),且,試找出與之間存在一個(gè)什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點(diǎn)逆時(shí)針方向旋轉(zhuǎn)(如圖)分別與、相交于點(diǎn)和點(diǎn)時(shí),作的角平分線與射線相交于點(diǎn),問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計(jì)算α和β的值,再根據(jù)內(nèi)錯(cuò)角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯(cuò)角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯(cuò)角相等證平行,平行線同旁內(nèi)角互補(bǔ)等知識是解題的關(guān)鍵.10.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對應(yīng)點(diǎn)分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請直接寫出旋轉(zhuǎn)的時(shí)間.解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時(shí),②當(dāng)BC∥EF時(shí),③當(dāng)BC∥DF時(shí),分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時(shí),如圖5,此時(shí)AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時(shí),如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時(shí),如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的時(shí)間為10s或30s或40s時(shí),線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.11.如圖1,已知直線CD∥EF,點(diǎn)A,B分別在直線CD與EF上.P為兩平行線間一點(diǎn).(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯(cuò)角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯(cuò)角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點(diǎn)在于過拐點(diǎn)作平行線.12.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)作,請你接著完成解答.問題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動,當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點(diǎn)作),請說明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.解析:(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點(diǎn)P在BA的延長線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.13.已知,AB∥CD,點(diǎn)E在CD上,點(diǎn)G,F(xiàn)在AB上,點(diǎn)H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點(diǎn)M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點(diǎn)K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).解析:(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點(diǎn)H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點(diǎn)M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點(diǎn)H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵M(jìn)Q∥AB,∴∠BGM=∠GMQ,∵M(jìn)Q∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過點(diǎn)M作MQ∥AB,過點(diǎn)H作HP∥AB,由∠KFE:∠MGH=13:5,設(shè)∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)定理以及靈活構(gòu)造平行線是解題的關(guān)鍵.14.如圖,已知直線,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在點(diǎn)的右側(cè),平分平分,直線交于點(diǎn).(1)若時(shí),則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動,其他條件不變,請畫出相應(yīng)圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點(diǎn)E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點(diǎn)B在點(diǎn)A左側(cè)和當(dāng)點(diǎn)B在點(diǎn)A右側(cè),再分三種情況,討論,分別過點(diǎn)E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計(jì)算即可.【詳解】解:(1)當(dāng)n=20時(shí),∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點(diǎn)B在點(diǎn)A左側(cè)時(shí),由(2)可知:∠BED=n°+40°;當(dāng)點(diǎn)B在點(diǎn)A右側(cè)時(shí),如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論