版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省共青城市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編難點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、下列各組數(shù)據(jù)為三角形的三邊,能構(gòu)成直角三角形的是(
)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,52、如圖,長(zhǎng)方形中,,,將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,折痕為,則的長(zhǎng)為(
)A.12 B.8 C.10 D.133、如圖,正方體盒子的棱長(zhǎng)為2,M為BC的中點(diǎn),則一只螞蟻從A點(diǎn)沿盒子的表面爬行到M點(diǎn)的最短距離為(
)A. B.C. D.4、我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》有一道“蕩秋千”的問(wèn)題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭(zhēng)蹴.良工高士素好奇,算出索長(zhǎng)有幾?”此問(wèn)題可理解為:“如圖,有一架秋千,當(dāng)它靜止時(shí),踏板離地距離的長(zhǎng)為尺,將它向前水平推送尺時(shí),即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問(wèn)繩索有多長(zhǎng)?”,設(shè)秋千的繩索長(zhǎng)為尺,根據(jù)題意可列方程為(
)A. B.C. D.5、△ABC的三邊長(zhǎng)a,b,c滿(mǎn)足+(b﹣12)2+|c﹣13|=0,則△ABC的面積是(
)A.65 B.60 C.30 D.266、如圖,△OAB的頂點(diǎn)O(0,0),頂點(diǎn)A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點(diǎn)A的坐標(biāo)是(
)A. B. C. D.7、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、我國(guó)古代有這樣一道數(shù)學(xué)問(wèn)題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問(wèn)葛藤之長(zhǎng)幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長(zhǎng)為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問(wèn)題中葛藤的最短長(zhǎng)度是_______尺.
2、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.3、如圖,矩形ABCD中,AD=6,AB=8.點(diǎn)E為邊DC上的一個(gè)動(dòng)點(diǎn),△AD'E與△ADE關(guān)于直線(xiàn)AE對(duì)稱(chēng),當(dāng)△CD'E為直角三角形時(shí),DE的長(zhǎng)為_(kāi)_.4、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為_(kāi)_____,的值為_(kāi)_____.5、如圖,某農(nóng)舍的大門(mén)是一個(gè)木制的長(zhǎng)方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對(duì)的頂點(diǎn)間用一塊木板加固,則木板的長(zhǎng)為_(kāi)_______.6、圖,在菱形ABCD中,,是銳角,于點(diǎn)E,M是AB的中點(diǎn),連接MD,若,則的值為_(kāi)_____.7、勾股定理最早出現(xiàn)在商高的《周髀算經(jīng)》:“勾廣三,股修四,經(jīng)隅五”.觀察下列勾股數(shù):3,4,5;5,12,13;7,24,25;…,這類(lèi)勾股數(shù)的特點(diǎn)是:勾為奇數(shù),弦與股相差為1,柏拉圖研究了勾為偶數(shù),弦與股相差為2的一類(lèi)勾股數(shù),如:6,8,10;8,15,17;…,若此類(lèi)勾股數(shù)的勾為2m(m≥3,m為正整數(shù)),則其弦是________(結(jié)果用含m的式子表示).8、我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問(wèn)索長(zhǎng)幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時(shí),繩索用盡問(wèn)繩索長(zhǎng)是多少?”示意圖如下圖所示,設(shè)繩索的長(zhǎng)為尺,根據(jù)題意,可列方程為_(kāi)_________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點(diǎn),且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說(shuō)明理由;(2)求△ABC的周長(zhǎng).2、閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題:∠MBN=30°,點(diǎn)A為射線(xiàn)BM上一點(diǎn),且AB=4,點(diǎn)C為射線(xiàn)BN上動(dòng)點(diǎn),連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當(dāng)AC⊥BN時(shí),求BD的長(zhǎng).小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對(duì)全等的三角形,再利用∠EBC=90°,從而將問(wèn)題解決(如圖1).請(qǐng)回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長(zhǎng)為.(2)動(dòng)點(diǎn)C在射線(xiàn)BN上運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到AC時(shí),求BD的長(zhǎng);(3)動(dòng)點(diǎn)C在射線(xiàn)BN上運(yùn)動(dòng),求△ABD周長(zhǎng)最小值.3、如圖,點(diǎn)是內(nèi)一點(diǎn),把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,且,,.(1)判斷的形狀,并說(shuō)明理由;(2)求的度數(shù).4、如圖,中,,,是邊上一點(diǎn),且,若.求的長(zhǎng).5、如圖,小明家在一條東西走向的公路北側(cè)米的點(diǎn)處,小紅家位于小明家北米(米)、東米(米)點(diǎn)處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點(diǎn)處建一個(gè)快遞驛站,使最小,請(qǐng)確定點(diǎn)的位置,并求的最小值.6、我市《道路交通管理?xiàng)l例》規(guī)定:小汽車(chē)在城市街道上的行駛速度不得超過(guò)60km/h.如圖,一輛小汽車(chē)在一條城市街道上沿直道行駛,某一時(shí)刻剛好行駛到車(chē)速檢測(cè)點(diǎn)A正前方30m的C處,2秒后又行駛到與車(chē)速檢測(cè)點(diǎn)A相距50m的B處.請(qǐng)問(wèn)這輛小汽車(chē)超速了嗎?若超速,請(qǐng)求出超速了多少?7、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹(shù)被折斷,樹(shù)的頂部落在離樹(shù)根8米處,即,求這棵樹(shù)在離地面多高處被折斷(即求AC的長(zhǎng)度)?-參考答案-一、單選題1、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進(jìn)行判斷.【詳解】A、42+72≠82,故不能構(gòu)成直角三角形;B、22+22≠22,故不能構(gòu)成直角三角形;C、2+2=4,故不能構(gòu)成三角形,不能構(gòu)成直角三角形;D、52+122=132,故能構(gòu)成直角三角形,故選D.【考點(diǎn)】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.2、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長(zhǎng)方形∴∠EAB=90°∴在中由勾股定理有即化簡(jiǎn)得解得故選:D.【考點(diǎn)】本題考查了折疊問(wèn)題求折痕或其他邊長(zhǎng),主要可根據(jù)折疊前后兩圖形的全等條件,把某個(gè)直角三角形的三邊都用同一未知量表示出來(lái),并根據(jù)勾股定理建立方程,進(jìn)而可以求解.3、B【解析】【分析】先利用展開(kāi)圖確定最短路線(xiàn),再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線(xiàn)AM爬行時(shí)距離最短;∵正方體盒子棱長(zhǎng)為2,M為BC的中點(diǎn),∴,∴,故選:B.【考點(diǎn)】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開(kāi)圖、勾股定理、兩點(diǎn)之間線(xiàn)段最短等知識(shí),解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.4、C【解析】【分析】根據(jù)勾股定理列方程即可得出結(jié)論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,讀懂題意是解題的關(guān)鍵.5、C【解析】【分析】首先根據(jù)非負(fù)數(shù)的性質(zhì)可得a-5=0,b-12=0,c-13=0,進(jìn)而可得a、b、c的值,再利用勾股定理逆定理證明△ABC是直角三角形,最后由直角三角形面積公式求解即可.【詳解】解:∵+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC==30.故選:C.【考點(diǎn)】此題主要考查了非負(fù)數(shù)的性質(zhì),以及勾股定理逆定理,熟練掌握如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形就是直角三角形,利用非負(fù)數(shù)性質(zhì)求出a、b、c的值是解題的關(guān)鍵.6、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點(diǎn)A的坐標(biāo)是(4,3),故選:D.【考點(diǎn)】本題考查了坐標(biāo)與圖形,全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.7、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長(zhǎng)為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點(diǎn)】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.二、填空題1、25.【解析】【詳解】解:這種立體圖形求最短路徑問(wèn)題,可以展開(kāi)成為平面內(nèi)的問(wèn)題解決,展開(kāi)后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問(wèn)題.根據(jù)勾股定理可求出葛藤長(zhǎng)為(尺).故答案為:25.2、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點(diǎn)】本題考查勾股定理、完全平方公式的變形求值、三角形面積計(jì)算的運(yùn)用,熟知勾股定理是解題的關(guān)鍵.3、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時(shí),如圖(1),根據(jù)軸對(duì)稱(chēng)的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對(duì)稱(chēng)的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線(xiàn)上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計(jì)算即可.【詳解】解:當(dāng)∠CED′=90°時(shí),如圖(1),∵∠CED′=90°,根據(jù)軸對(duì)稱(chēng)的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對(duì)稱(chēng)的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線(xiàn)上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長(zhǎng)為3或6;故答案為:3或6.【考點(diǎn)】本題考查了矩形的性質(zhì)、勾股定理、軸對(duì)稱(chēng)的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對(duì)稱(chēng)的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.4、
24
0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.5、2.5m【解析】【詳解】設(shè)木棒的長(zhǎng)為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長(zhǎng)為2.5m.故答案為2.5m.6、【解析】【分析】延長(zhǎng)DM交CB的延長(zhǎng)線(xiàn)于點(diǎn)首先證明,設(shè),利用勾股定理構(gòu)建方程求出x即可解決問(wèn)題.【詳解】延長(zhǎng)DM交CB的延長(zhǎng)線(xiàn)于點(diǎn)H,四邊形ABCD是菱形,,,,,,≌,,,,設(shè),,,,,,或舍棄,,故答案為.【考點(diǎn)】本題考查了菱形的性質(zhì)、勾股定理、線(xiàn)段的垂直平分線(xiàn)的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),正確添加輔助線(xiàn),構(gòu)造全等三角形解決問(wèn)題是解決本題的關(guān)鍵.7、m2+1【解析】【分析】2m為偶數(shù),設(shè)其股是a,則弦為a+2,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】∵2m為偶數(shù),∴設(shè)其股是a,則弦為a+2,根據(jù)勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長(zhǎng)為m2+1,故答案為:m2+1.【考點(diǎn)】本題考查了勾股數(shù),勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.8、x2?(x?3)2=82【解析】【分析】設(shè)繩索長(zhǎng)為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長(zhǎng)為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.三、解答題1、(1)△BDC為直角三角形,理由見(jiàn)解析;(2)△ABC的周長(zhǎng)為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長(zhǎng),周長(zhǎng)即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長(zhǎng)=2AB+BC=(cm).【考點(diǎn)】本題考查了勾股定理的逆定理,關(guān)鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應(yīng)用解答.2、(1)ABD,ACE,;(2)BD的長(zhǎng)為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長(zhǎng)度;(2)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長(zhǎng)度,再利用勾股定理即可求出CE的長(zhǎng)度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',此時(shí)BD+AC'有最小值即為AF,此時(shí)△ABD周長(zhǎng)=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時(shí)BD的長(zhǎng)為;(3)解:如圖,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此時(shí)BD+AC'有最小值即為AF,∴此時(shí)△ABD周長(zhǎng)=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此時(shí)△ABD周長(zhǎng)為:+4.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),勾股定理等,作出合適的輔助線(xiàn),構(gòu)造出全等三角形是解題的關(guān)鍵.3、(1)是直角三角形,理由見(jiàn)解析;(2)150°.【解析】【分析】(1)求出DE,CE,CD長(zhǎng),根據(jù)勾股逆定理可知的形狀;(2)由等邊三角形角的性質(zhì)和全等三角形角的性質(zhì)可知的度數(shù)【詳解】解:(1)是直角三角形理由如下:繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,,,,是等邊三角形,,又,,是直角三角形.(2)由(1)得,,是等邊三角形,,,.【考點(diǎn)】本題是三角形綜合題,主要考查了全等三角形的證明和性質(zhì)、等邊三角形的性質(zhì)和判定、勾股逆定理,熟練應(yīng)用等邊三角形的性質(zhì)求線(xiàn)段長(zhǎng)及角度是解題的關(guān)鍵.4、AC2=CE2+AE2=102+24∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能趕回巢中.【考點(diǎn)】本題考查了勾股定理的應(yīng)用.關(guān)鍵是構(gòu)造直角三角形,同時(shí)注意:時(shí)間=路程÷速度.2.2【解析】【分析】過(guò)點(diǎn)作于點(diǎn),則,,結(jié)合可得出,進(jìn)而可得出,在中,利用勾股定理可求出的長(zhǎng),即,結(jié)合可求出的長(zhǎng).【詳解】解:過(guò)點(diǎn)作于點(diǎn),如圖所示.,,,.,,.在中,∵,,即,,.又,,.【考點(diǎn)】本題考查了勾股定理、等腰三角形的性質(zhì)以及三角形內(nèi)角和定理,在中,利用勾股定理求出的長(zhǎng)是解題的關(guān)鍵.5、(1)米;(2)見(jiàn)解析,米【解析】【分析】(1)如圖,連接AB,根據(jù)勾股定理即可得到結(jié)論;(2)如圖,作點(diǎn)A關(guān)于直線(xiàn)M
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 濕法煉鋅工藝流程題目及答案
- 有關(guān)中藥學(xué)的題目及答案
- 養(yǎng)老院老人生活?yuàn)蕵?lè)活動(dòng)組織人員職業(yè)發(fā)展規(guī)劃制度
- 養(yǎng)老院工作人員保密制度
- 養(yǎng)老院財(cái)務(wù)審批制度
- 辦公室內(nèi)部溝通與協(xié)作制度
- 鈦卷帶開(kāi)平線(xiàn)處罰制度
- 酒店財(cái)務(wù)報(bào)銷(xiāo)制度
- 奧數(shù)3年級(jí)題目及答案
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)門(mén)窗行業(yè)發(fā)展前景預(yù)測(cè)及投資方向研究報(bào)告
- DB2110∕T 0004-2020 遼陽(yáng)地區(qū)主要樹(shù)種一元、二元立木材積表
- 剖宮產(chǎn)疤痕妊娠課件
- 電信崗位晉升管理辦法
- 業(yè)務(wù)提成協(xié)議勞務(wù)合同
- T-FIQ 003-2025 青海省可持續(xù)掛鉤貸款服務(wù)指南
- 企業(yè)危險(xiǎn)化學(xué)品安全管理承諾書(shū)
- GB/T 11182-2025橡膠軟管增強(qiáng)用鋼絲
- 2025年關(guān)于院外購(gòu)藥吃回扣自查報(bào)告
- 【化學(xué)】遼寧省丹東市2025屆高三下學(xué)期總復(fù)習(xí)質(zhì)量測(cè)試(一)試題(解析版)
- 信息系統(tǒng)分析與設(shè)計(jì) 課件全套 廖浩德 0 課程簡(jiǎn)介、1.1 計(jì)算與計(jì)算學(xué)科 -9 動(dòng)態(tài)行為建模
- 儀表聯(lián)鎖培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論