2025山西省介休市中考數學考前沖刺練習試題附答案詳解(鞏固)_第1頁
2025山西省介休市中考數學考前沖刺練習試題附答案詳解(鞏固)_第2頁
2025山西省介休市中考數學考前沖刺練習試題附答案詳解(鞏固)_第3頁
2025山西省介休市中考數學考前沖刺練習試題附答案詳解(鞏固)_第4頁
2025山西省介休市中考數學考前沖刺練習試題附答案詳解(鞏固)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省介休市中考數學考前沖刺練習試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關系是(

)A.在⊙O內 B.在⊙O上 C.在⊙O外 D.以上都有可能2、當0x3,函數y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,43、生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互贈了182件,如果全組有x名同學,則根據題意列出的方程是(

)A. B.C. D.4、距考試還有20天的時間,為鼓舞干勁,老師要求班上每一名同學要給同組的其他同學寫一份拼搏進取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人5、若關于x的二次函數y=ax2+bx的圖象經過定點(1,1),且當x<﹣1時y隨x的增大而減小,則a的取值范圍是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,在△ABC中,AB=BC,將△ABC繞點B順時針旋轉a度,得到△A1BC1,A1B交AC于點E,A1C1分別交AC,BC于點D,F,下列結論:其中正確的有(

).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF2、如圖,是半圓的直徑,半徑于點,為半圓上一點,,與交于點,連接,,給出以下四個結論,其中正確的是(

)A.平分 B. C. D.3、如圖,在中,為直徑,,點D為弦的中點,點E為上任意一點,則的大小不可能是(

)A. B. C. D.4、如圖,在中,,,點D,E分別為,上的點,且.將繞點A逆時針旋轉至點B,A,E在同一條直線上,連接,.下列結論正確的是(

)A. B. C. D.旋轉角為5、等腰三角形三邊長分別為a,b,3,且a,b是關于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.18第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、五張背面完全相同的卡片上分別寫有、、-31、、0.101001001…(相鄰兩個1間依次多1個0)五個實數,如果將卡片字面朝下隨意放在桌子上,任意取一張,抽到有理數的概率是______.2、不透明袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則它是黃球的概率是_______.3、中國“一帶一路”倡議給沿線國家?guī)砗艽蟮慕洕б妫粞鼐€某地區(qū)居民2017年人均收入300美元,預計2019年人均收入將達到432美元,則2017年到2019年該地區(qū)居民年人均收入增長率為______________.4、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.5、若拋物線的圖像與軸有交點,那么的取值范圍是________.四、解答題(6小題,每小題10分,共計60分)1、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=02、如圖①已知拋物線的圖象與軸交于、兩點(在的左側),與的正半軸交于點,連結;二次函數的對稱軸與軸的交點.(1)拋物線的對稱軸與軸的交點坐標為,點的坐標為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點,過點作軸的平行線,與直線交于點與拋物線交于點,連結,將沿翻折,的對應點為’,在圖②中探究:是否存在點,使得’恰好落在軸上?若存在,請求出的坐標:若不存在,請說明理由.3、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點D在線段AC上,且∠CBD=∠BAC.作法:①以點A為圓心,AB長為半徑畫圓;②以點C為圓心,BC長為半徑畫弧,交⊙A于點P(不與點B重合);③連接BP交AC于點D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點C在⊙A上.∵點P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據)∵BC=PC,∴∠CBD=.()(填推理的依據)∴∠CBD=∠BAC.4、已知關于x的一元二次方程有兩個相等的實數根,求的值.5、判斷2、5、-4是不是一元二次方程的根6、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構成什么圖形,請說明理由.-參考答案-一、單選題1、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據勾股定理得到OA=.∴點A與⊙O的位置關系是:點A在⊙O內.故選A.2、A【解析】【分析】利用配方法把原方程化為頂點式,再根據二次函數的性質即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數的最值,掌握二次函數的性質與利用配方法將一般式改為頂點式是解答本題的關鍵.3、B【解析】【分析】由題意可知,每個同學需贈送出(x-1)件標本,x名同學需贈送出x(x-1)件標本,即可列出方程.【詳解】解:由題意可得,x(x-1)=182,故選B.【考點】本題主要考查了一元二次方程的應用,審清題意、確定等量關系是解答本題的關鍵.4、B【解析】【分析】設小組有x人,根據題意,得x(x-1)=30,解方程即可.【詳解】設小組有x人,根據題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點】本題考查了一元二次方程的應用,熟練掌握方程的應用是解題的關鍵.5、D【解析】【分析】根據題意開口向上,且對稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數y=ax2+bx可知拋物線過原點,∵拋物線定點(1,1),且當x<-1時,y隨x的增大而減小,∴拋物線開口向上,且對稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點】本題考查了二次函數圖象與系數的關系,二次函數圖象上點的坐標特征,根據題意得關于a的不等式組是解題的關鍵.二、多選題1、ABD【解析】【分析】根據等腰三角形的性質由BA=BC得∠A=∠C,再根據旋轉的性質得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據對頂角相等得∠BFC1=∠DFC,于是可根據三角形內角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當旋轉角等于∠C時才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點B順時針旋轉α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當旋轉角等于∠C時,DF=FC,所以C錯誤;故選ABD.【考點】本題主要考查了旋轉的性質,全等三角形的性質與判定,等腰三角形的性質,三角形內角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、ABCD【解析】【分析】根據圓周角定理即可得出平分,證明全等即可得到,根據即可得到,即可得到;【詳解】∵是半圓的直徑,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正確;又∵,,∴,∴,故B正確;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正確;∴,∴,故D正確;故選ABCD.【考點】本題主要考查了圓周角定理、直角三角形的性質、全等三角形的判定與性質、相似三角形的判定與性質,準確計算是解題的關鍵.3、ACD【解析】【分析】延長ED交⊙O于N,連接OD,并延長交⊙O于M,根據已知條件知的度數是80°,根據點D為弦AC的中點得出,求出、的度數=40°,即可求出40°<的度數<80°,再得出答案即可.【詳解】解:延長ED交⊙O于N,連接OD,并延長交⊙O于M,∵∠AOC=80°,∴的度數是80°,∵點D為弦AC的中點,OA=OC,∴∠AOD=∠COD,∴,即M為的中點,∴、的度數都是×80°=40°,∵>,∴40°<的度數<80°,∴20°<∠CED<40°,∴選項ACD符合題意;選項B不符合題意;故選:ACD.【考點】本題考查了圓心角、弧、弦之間的關系,圓周角定理,等腰三角形的性質等知識點,能求出的范圍是解此題的關鍵.4、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,可得旋轉角為60°,故D錯誤;由DE∥BC,易證AD=AE,得出BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;證明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正確;即可得出結果.【詳解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,則旋轉角為:180°120°=60°,故D錯誤;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正確;故選:ABC.【考點】本題考查了旋轉的性質、等腰三角形的判定與性質、平行線的性質等知識;熟練掌握旋轉的性質與等腰三角形的性質是解題的關鍵.5、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關系確定此種情況存在,再利用根與系數的關系即可求得的值;當3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數的關系即可求得的值.【詳解】解:當3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點】本題考查了一元二次方程根與系數的關系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關鍵.三、填空題1、##0.4【解析】【分析】根據題意可知有理數有-31、,共2個,根據概率公式即可求解【詳解】解:在、、-31、、0.101001001…(相鄰兩個1間依次多1個0)五個實數中,-31、是有理數,∴任意取一張,抽到有理數的概率是故答案為:【考點】本題考查了實數的分類,根據概率公式求概率,理解題意是解題的關鍵.2、【解析】【分析】用黃球的個數除以總球的個數即可得出取出黃球的概率.【詳解】解:∵不透明的袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,∴從袋子中隨機取出1個球,則它是黃球的概率為;故答案為:.【考點】此題考查了概率公式,明確概率的意義是解答問題的關鍵,用到的知識點為:概率=所求情況數與總情況數之比.3、20【解析】【分析】設該地區(qū)人均收入增長率為x,根據2017年人均收入300美元,預計2019年人均收入將達到432美元,可列方程求解.【詳解】解:設該地區(qū)人均收入增長率為x,則300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴該地區(qū)人均收入增長率為20%.故本題答案應為:20%.【考點】一元二次方程在實際生活中的應用是本題的考點,根據題意列出方程是解題的關鍵.4、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點】本題考查的是利用因式分解的方法把高次方程轉化為一次方程,掌握“因式分解的方法與應用”是解本題的關鍵.5、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數根∴∴.故答案是:【考點】本題考查了二次函數與軸的交點情況與一元二次方程分的情況的關系、解一元一次不等式,能由已知條件列出關于的不等式是解題的關鍵.四、解答題1、(1)x1=7,x2=-9;(2)x1=2+,x2=2-;(3)x1=-1+,x2=-1-;(4)x1=-2,x2=4【解析】【分析】(1)方程移項后,運用直接開平方法求解即可;(2)根據配方法解一元二次方程的步驟依次計算即可;(3)根據配方法解一元二次方程的步驟依次計算即可;(4)根據因式分解法求解即可.【詳解】解:(1)(x+1)2=64x+1=±8∴x1=7,x2=-9(2)x2﹣4x=-1x2﹣4x+4=-1+4(x-2)2=3x-2=±∴x1=2+,x2=2-(3)x2+2x=2x2+2x+1=2+1(x+1)2=3x+1=±∴x1=-1+,x2=-1-(4)(x+2)(x-4)=0x+2=0或x-4=0∴x1=-2,x2=4【考點】本題考查一元二次方程的求解,選擇適合的方法是解題關鍵.2、(1);(2);(3)【解析】【分析】(1)由拋物線的對稱軸為直線,即可求得點E的坐標;在y=ax2﹣3ax﹣4a(a<0)令y=0可得關于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點A的坐標;(2)如圖1,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,結合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點B的坐標為(4,0),點C的坐標為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點N在直線BC的上方和下方兩種情況用含m的代數式表達出MN的長度,結合MN=CM即可列出關于m的方程,解方程即可求得對應的m的值,從而得到對應的點Q的坐標.【詳解】解:(1)∵對稱軸x=,∴點E坐標(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點A坐標(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物線解析式為y=.(3)如圖②中,由題意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵點B的坐標為(4,0),點C的坐標為(0,3),∴直線BC解析式為y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①當N在直線BC上方時,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍棄),∴Q1(,0).②當N在直線BC下方時,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍棄),∴Q2(,0),綜上所述:點Q坐標為(,0)或(,0).【考點】本題是一道二次函數與幾何及銳角三角函數綜合的題,解題的要點是:(1)熟悉二次函數的對稱軸方程及二次函數與一元二次方程的關系是解第1小題的關鍵;(2)由切線的性質得到DE⊥BC,從而得到tan∠OBC=,這樣結合已知條件求出a的值是解第2小題的關鍵;(3)過點M作MF⊥y軸于點F,這樣由sin∠BCO=變形把MC用含m的代數式表達出來,再由折疊的性質和MN∥y軸證得MN=MC,這樣就可分點N在BC的上方和下方兩種情況列出關于m的方程,解方程求得對應的m的值是解第3小題的關鍵.3、(1)見解析;(2)圓周角定理;,圓周角定理的推論【解析】【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論