2025年河北省涿州市中考數(shù)學模擬題庫及參考答案詳解(能力提升)_第1頁
2025年河北省涿州市中考數(shù)學模擬題庫及參考答案詳解(能力提升)_第2頁
2025年河北省涿州市中考數(shù)學模擬題庫及參考答案詳解(能力提升)_第3頁
2025年河北省涿州市中考數(shù)學模擬題庫及參考答案詳解(能力提升)_第4頁
2025年河北省涿州市中考數(shù)學模擬題庫及參考答案詳解(能力提升)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省涿州市中考數(shù)學模擬題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、把四張撲克牌所擺放的順序與位置如下,小楊同學選取其中一張撲克牌把他顛倒后在放回原來的位置,那么撲克牌的擺放順序與位置都沒變化,那么小楊同學所選的撲克牌是(

)A. B. C. D.2、2019年女排世界杯于9月在日本舉行,中國女排以十一連勝的驕人成績衛(wèi)冕冠軍,充分展現(xiàn)了團隊協(xié)作、頑強拼搏的女排精神.如圖是某次比賽中墊球時的動作,若將墊球后排球的運動路線近似的看作拋物線,在同一豎直平面內建立如圖所示的直角坐標系,已知運動員墊球時(圖中點A)離球網的水平距離為5米,排球與地面的垂直距離為0.5米,排球在球網上端0.26米處(圖中點B)越過球網(女子排球賽中球網上端距地面的高度為2.24米),落地時(圖中點)距球網的水平距離為2.5米,則排球運動路線的函數(shù)表達式為(

)A. B.C. D.3、當0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,44、5個紅球、4個白球放入一個不透明的盒子里,從中摸出6個球,恰好紅球與白球都摸到,這個事件()A.不可能發(fā)生 B.可能發(fā)生 C.很可能發(fā)生 D.必然發(fā)生5、如圖,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉90°,得到,則點的坐標為(

).A. B.C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,在中,,,點D,E分別為,上的點,且.將繞點A逆時針旋轉至點B,A,E在同一條直線上,連接,.下列結論正確的是(

)A. B. C. D.旋轉角為2、下列各組圖形中,由左邊變成右邊的圖形,分別進行了平移、旋轉、軸對稱、中心對稱等變換,其中進行了旋轉變換的是(

)組,進行軸對稱變換的是(

).A. B. C. D.3、下列說法中,不正確的是(

)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經過這條弦所在圓的圓心D.在一個圓內平分一條弧和平分它所對的弦的直線必經過這個圓的圓心4、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+175、如圖,拋物線過點,對稱軸是直線.下列結論正確的是(

)A.B.C.若關于x的方程有實數(shù)根,則D.若和是拋物線上的兩點,則當時,第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖有一拋物線形的拱橋,拱高10米,跨度為40米,則該拋物線的表達式為______________.2、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設道路的寬為xm,則根據(jù)題意,可列方程為_______.3、已知關于的一元二次方程,有下列結論:①當時,方程有兩個不相等的實根;②當時,方程不可能有兩個異號的實根;③當時,方程的兩個實根不可能都小于1;④當時,方程的兩個實根一個大于3,另一個小于3.以上4個結論中,正確的個數(shù)為_________.4、若某二次函數(shù)圖象的形狀與拋物線y=3x2相同,且頂點坐標為(0,-2),則它的表達式為________.5、拋物線y=ax2+bx+c(a≠0)的部分圖象如圖所示,其與x軸的一個交點坐標為(﹣3,0),對稱軸為x=﹣1,則當y<0時,x的取值范圍是_____.四、解答題(6小題,每小題10分,共計60分)1、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.2、如圖,直角三角形中,,為中點,將繞點旋轉得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運動,過點作直線,使.(1)當點運動2秒時,另一動點也從出發(fā)沿的路線運動,且在上以每秒1的速度勻速運動,在上以每秒2的速度勻速運動,過作直線使,設點的運動時間為秒,直線與截四邊形所得圖形的面積為,求關于的函數(shù)關系式,并求出的最大值.(2)當點開始運動的同時,另一動點從處出發(fā)沿的路線運動,且在上以每秒的速度勻速運動,在上以每秒2的速度勻度運動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運動的時間的值,若不存在請說明理由.3、已知,是一元二次方程的兩個實數(shù)根.(1)求k的取值范圍;(2)是否存在實數(shù)k,使得等式成立?如果存在,請求出k的值,如果不存在,請說明理由.4、已知關于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關系;(3)若將拋物線沿軸翻折得到新拋物線,當時,新拋物線對應的函數(shù)有最小值3,求的值.5、已知關于x的一元二次方程.(1)求證:不論m取何值,方程總有兩個不相等的實數(shù)根;(2)若方程有兩個實數(shù)根為,,且,求m的值.6、如圖,AB是的直徑,弦于點E.若,,求弦CD.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,圖形是中心對稱圖形即可得出答案.【詳解】由題意可知,圖形是中心對稱圖形,可得答案為D,故選:D.【考點】本題考查了圖形的中心對稱的性質,掌握中心圖形的性質是解題的關鍵.2、A【解析】【分析】由題意可知點A坐標為(-5,0.5),點B坐標為(0,2.5),點C坐標為(2.5,0),設排球運動路線的函數(shù)表達式為:y=ax2+bx+c,將點A、B、C的坐標代入得關于a、b、c的三元一次方程組,解得a、b、c的值,則函數(shù)解析式可得,從而問題得解.【詳解】解:由題意可知點A坐標為(-5,0.5),點B坐標為(0,2.5),點C坐標為(2.5,0)設排球運動路線的函數(shù)解析式為:y=ax2+bx+c,∵排球經過A、B、C三點,,解得:,∴排球運動路線的函數(shù)解析式為,故選:A.【考點】本題考查了根據(jù)實際問題列二次函數(shù)關系式并求得關系式,數(shù)形結合并明確二次函數(shù)的一般式是解題的關鍵.3、A【解析】【分析】利用配方法把原方程化為頂點式,再根據(jù)二次函數(shù)的性質即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質與利用配方法將一般式改為頂點式是解答本題的關鍵.4、D【解析】【分析】根據(jù)事件的可能性判斷相應類型即可.【詳解】5個紅球、4個白球放入一個不透明的盒子里,由于紅球和白球的個數(shù)都小于6,從中摸出6個球,恰好紅球與白球都摸到,是必然事件.故選:D.【考點】本題考查的是可能性大小的判斷,解決這類題目要注意具體情況具體對待.一般地必然事件的可能性大小為1,不可能事件發(fā)生的可能性大小為0,隨機事件發(fā)生的可能性大小在0至1之間.5、A【解析】【分析】根據(jù)網格結構作出旋轉后的圖形,然后根據(jù)平面直角坐標系寫出點B′的坐標即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標與圖形變化,熟練掌握網格結構,作出圖形是解題的關鍵.二、多選題1、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,可得旋轉角為60°,故D錯誤;由DE∥BC,易證AD=AE,得出BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;證明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正確;即可得出結果.【詳解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,則旋轉角為:180°120°=60°,故D錯誤;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正確;故選:ABC.【考點】本題考查了旋轉的性質、等腰三角形的判定與性質、平行線的性質等知識;熟練掌握旋轉的性質與等腰三角形的性質是解題的關鍵.2、AC【解析】【分析】旋轉是一個圖形繞著一個定點旋轉一定的角度,各對應點之間的位置關系也保持不變;在平面內,如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.據(jù)此即可解答.【詳解】由旋轉是一個圖形繞著一個定點旋轉一定的角度,各對應點之間的位置關系也保持不變,分析可得,進行旋轉變換的是A;左邊圖形能軸對稱變換得到右邊圖形,則進行軸對稱變換的是C;根據(jù)平移是將一個圖形從一個位置變換到另一個位置,各對應點間的連線平行,分析可得,D是平移變化;故答案為:A;C.【考點】本題考查了幾何變換的定義,注意結合幾何變換的定義,分析圖形的位置的關系,特別是對應點之間的關系.3、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經過這條弦所在的圓心,應該是:弦的垂直平分線必經過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內,平分一條弧和它所對弦的直線必經過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理及其推論.4、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.5、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側,∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關于x的方程有實數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)的性質,二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質是解題的關鍵.三、填空題1、【解析】【分析】由題意拋物線過點(40,0),頂點坐標為(20,10),設拋物線的解析式為,從而求出a的值,然后確定拋物線的解析式.【詳解】解:依題意得此函數(shù)解析式頂點為,∴設解析式為,又函數(shù)圖象經過,,,.故答案為.【考點】本題主要考查用待定系數(shù)法確定二次函數(shù)的解析式,解題時應根據(jù)情況設拋物線的解析式從而使解題簡單,此題設為頂點式比較簡單.2、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構成一個矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點】本題考查了一元二次方程的應用,關鍵將四個矩形用恰當?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P系.3、①③④【解析】【分析】由根的判別式,根與系數(shù)的關系進行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當,即時,方程有兩個不相等的實根;故①正確;當,解得:,方程有兩個同號的實數(shù)根,則當時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質,一元二次方程根的判別式,根與系數(shù)的關系,解題的關鍵是掌握所學的知識進行解題.4、y=3x2-2或y=-3x2-2【解析】【分析】根據(jù)二次函數(shù)的圖象特點即可分類求解.【詳解】二次函數(shù)的圖象與拋物線y=3x2的形狀相同,說明它們的二次項系數(shù)的絕對值相等,故本題有兩種可能,即y=3x2-2或y=-3x2-2.故答案為y=3x2-2或y=-3x2-2.【考點】此題主要考查二次函數(shù)的圖象,解題的關鍵是熟知二次函數(shù)形狀相同,二次項系數(shù)的絕對值相等.5、﹣3<x<1【解析】【分析】根據(jù)拋物線與x軸的一個交點坐標和對稱軸,由拋物線的對稱性可求拋物線與x軸的另一個交點,再根據(jù)拋物線的增減性可求當y<0時,x的取值范圍.【詳解】解:∵拋物線y=ax2+bx+c(a≠0)與x軸的一個交點為(﹣3,0),對稱軸為x=﹣1,∴拋物線與x軸的另一個交點為(1,0),由圖象可知,當y<0時,x的取值范圍是﹣3<x<1.故答案為:﹣3<x<1.【考點】本題考查了二次函數(shù)的性質和數(shù)形結合能力,熟練掌握并靈活運用是解題的關鍵.四、解答題1、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標為(4,0)或(,0).【考點】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標轉換為線段長度,幾何圖形與二次函數(shù)結合的問題,最后一問推出CG=HG為解題關鍵.2、(1),S的最大值為;(2)存在,m的值為或或或.【解析】【分析】(1)分、和三種情況分別表示出有關線段求得兩個變量之間的函數(shù)關系即可.(2)分兩種情形:①如圖中,由題意點在上運動的時間與點在上運動的時間相等,即.當時,當時,當時,分別構建方程求解即可.②如圖中,作于.首先證明,根據(jù)構建方程即可解決問題.【詳解】解:(1)如圖中,當時,點與點都在上運動,,,,,,,,,,.此時兩平行線截平行四邊形的面積為.如圖中,當時,點在上運動,點仍在上運動.則,,,,,,,而,故此時兩平行線截平行四邊形的面積為:,如圖中,當時,點和點都在上運動.則,,,.此時兩平行線截平行四邊形的面積為.故關于的函數(shù)關系式為,當時,S隨t增大而增大,當時,S隨t增大而增大,當時,S隨t增大而減小,∴當t=8時,S最大,代入可得S=;(2)如圖中,由題意點在上運動的時間與點在上運動的時間相等,.當時,,則有,解得,當時,則有,解得,當時,,則有,解得.如圖中,作于.在Rt△CHR中,,,,,,,四邊形是平行四邊形,,四邊形是矩形,,當時,則有,解得,綜上所述,滿足條件的m的值為或或或.【考點】本題屬于四邊形綜合題,考查了平行四邊形的性質,多邊形的面積,等腰三角形的判定和性質等知識,解題的關鍵是學會用分類討論的思想思考問題,學會利用參數(shù)構建方程解決問題,屬于中考壓軸題.3、(1);(2)【解析】【分析】(1)根據(jù)方程的系數(shù)結合≥0,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍;(2)根據(jù)根與系數(shù)的關系可得出x1+x2=2,x1x2=k+2,結合,即可得出關于k的方程,解之即可得出k值,再結合(1)即可得出結論.【詳解】解:(1)∵一元二次方程有兩個實數(shù)根,∴解得;(2)由一元二次方程根與系數(shù)關系,∵,∴即,解得.又由(1)知:,∴.【考點】本題考查了根與系數(shù)的關系以及根的判別式,解題的關鍵是:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論