版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河北省高碑店市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.452、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形3、如圖,△ABC中,,以其三邊分別向外側(cè)作正方形,然后將整個(gè)圖形放置于如圖所示的長方形中,若要求圖中兩個(gè)陰影部分面積之和,則只需知道(
)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積4、如圖,一棵大樹在一次強(qiáng)臺風(fēng)中距地面5m處折斷,倒下后樹頂端著地點(diǎn)A距樹底端B的距離為12m,這棵大樹在折斷前的高度為(
)A.10m B.15m C.18m D.20m5、如圖,矩形中,的平分線交于點(diǎn)E,,垂足為F,連接.下列結(jié)論:①;②;③;④;⑤若,則.其中正確的結(jié)論有(
)A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)6、為⊙外一點(diǎn),與⊙相切于點(diǎn),,,則的長為(
)A. B. C. D.7、以下列各組數(shù)的長為邊作三角形,不能構(gòu)成直角三角形的是(
)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,15第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為______.2、如圖,將矩形紙片ABCD沿EF折疊,使D點(diǎn)與BC邊的中點(diǎn)D′重合.若BC=8,CD=6,則CF的長為_________________.3、已知a、b、c是一個(gè)三角形的三邊長,如果滿足,則這個(gè)三角形的形狀是_______.4、在一棵樹的5米高B處有兩個(gè)猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過的距離相等,則這棵樹高_(dá)______米.5、云頂滑雪公園是北京2022年冬奧會7個(gè)雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場U型池的實(shí)景圖和示意圖,該場地可以看作是從一個(gè)長方體中挖去了半個(gè)圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點(diǎn)E在上,.一名滑雪愛好者從點(diǎn)A滑到點(diǎn)E,他滑行的最短路線長為_________m.6、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.7、勾股定理最早出現(xiàn)在商高的《周髀算經(jīng)》:“勾廣三,股修四,經(jīng)隅五”.觀察下列勾股數(shù):3,4,5;5,12,13;7,24,25;…,這類勾股數(shù)的特點(diǎn)是:勾為奇數(shù),弦與股相差為1,柏拉圖研究了勾為偶數(shù),弦與股相差為2的一類勾股數(shù),如:6,8,10;8,15,17;…,若此類勾股數(shù)的勾為2m(m≥3,m為正整數(shù)),則其弦是________(結(jié)果用含m的式子表示).8、如圖,已知中,,,動點(diǎn)M滿足,將線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.三、解答題(7小題,每小題10分,共計(jì)70分)1、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長;(2)求四邊形ABCD的面積.2、如圖,已知和中,,,,點(diǎn)C在線段BE上,連接DC交AE于點(diǎn)O.(1)DC與BE有怎樣的位置關(guān)系?證明你的結(jié)論;(2)若,,求DE的長.3、如圖,高速公路上有A,B兩點(diǎn)相距10km,C,D為兩村莊,已知DA=4km,CB=6km,DA⊥AB于點(diǎn)A,CB⊥AB于B,現(xiàn)要在AB上建一個(gè)服務(wù)站E,使得C,D兩村莊到E站的距離相等,求BE的長.4、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.5、在邊長為8的等邊ABC中,點(diǎn)D是邊AB上的一動點(diǎn),點(diǎn)E在邊AC上,且CE=2AD,射線DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數(shù);②取邊BC的中點(diǎn)M,當(dāng)PM取最小值時(shí),求AD的長.6、如圖,已知半徑為5的⊙M經(jīng)過x軸上一點(diǎn)C,與y軸交于A、B兩點(diǎn),連接AM、AC,AC平分∠OAM,AO+CO=6(1)判斷⊙M與x軸的位置關(guān)系,并說明理由;(2)求AB的長;(3)連接BM并延長交圓M于點(diǎn)D,連接CD,求直線CD的解析式.7、一個(gè)25米長的梯子,斜靠在一豎直的墻上,這時(shí)的距離為24米,如果梯子的頂端A沿墻下滑4米,那么梯子底端B外移多少米?-參考答案-一、單選題1、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點(diǎn)】本題考查了勾股定理,根據(jù)圖形推出四個(gè)正方形的關(guān)系是解決問題的關(guān)鍵.2、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點(diǎn)】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.3、D【解析】【分析】如圖所示,過點(diǎn)C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點(diǎn)C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠正確作出輔助線,構(gòu)造全等三角形.4、C【解析】【詳解】∵樹的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹原來的高度=BC+AC=5+13=18m.故選C.5、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進(jìn)而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點(diǎn)F作FG⊥BC于點(diǎn)G,可得,從而得到,進(jìn)而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點(diǎn)F作FG⊥BC于點(diǎn)G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個(gè).故選:D【考點(diǎn)】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識,熟練掌握相關(guān)知識點(diǎn)是解題的關(guān)鍵.6、A【解析】【分析】連接OT,根據(jù)切線的性質(zhì)求出求,結(jié)合利用含的直角三角形的性質(zhì)求出OT,再利用勾股定理求得PT的長度即可.【詳解】解:連接OT,如下圖.∵與⊙相切于點(diǎn),∴.∵,,∴,∴.故選:A.【考點(diǎn)】本題考查了切線的性質(zhì),含的直角三角形的性質(zhì),勾股定理,求出OT的長度是解答關(guān)鍵.7、B【解析】【分析】先求出兩小邊的平方和,再求出最長邊的平方,最后看看是否相等即可.【詳解】解:A、32+42=52,故是直角三角形,不符合題意;B、42+52≠62,故不是直角三角形,符合題意;C、62+82=102,故是直角三角形,不符合題意;D、92+122=152,故是直角三角形,不符合題意;故選:B.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.二、填空題1、29【解析】【分析】如圖(見解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解題關(guān)鍵.2、【解析】【分析】設(shè),在中利用勾股定理求出x即可解決問題.【詳解】解:∵是的中點(diǎn),,,∴,由折疊的性質(zhì)知:,設(shè),則,在中,根據(jù)勾股定理得:,即:,解得,∴.故答案為:【考點(diǎn)】本題考查翻折變換、勾股定理,解題的關(guān)鍵是利用翻折不變性解決問題,學(xué)會轉(zhuǎn)化的思想,利用方程的去思考問題,屬于中考??碱}型.3、直角三角形【解析】【分析】根據(jù)絕對值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.4、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點(diǎn)】本題考查了勾股定理在實(shí)際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.5、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點(diǎn)】本題考查了平面展開﹣?zhàn)疃搪窂絾栴},解決本題的關(guān)鍵是掌握圓柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.6、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點(diǎn)】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計(jì)算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.7、m2+1【解析】【分析】2m為偶數(shù),設(shè)其股是a,則弦為a+2,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】∵2m為偶數(shù),∴設(shè)其股是a,則弦為a+2,根據(jù)勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長為m2+1,故答案為:m2+1.【考點(diǎn)】本題考查了勾股數(shù),勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.8、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當(dāng)點(diǎn)N落在線段AB上時(shí),最小,求出最小值即可.【詳解】解:∵線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.三、解答題1、(1)BD=20;(2)S四邊形ABCD=246.【解析】【分析】(1)由∠A=90°,AD=12,AB=16,利用勾股定理:BD2=AD2+AB2,從而可得答案;(2)利用勾股定理的逆定理證明:∠CDB=90°,再由四邊形的面積等于兩個(gè)直角三角形的面積之和可得答案.【詳解】解:(1)∵∠A=90°,AD=12,AB=16,∴BD2=AD2+AB2,∴BD2=122+162,∴BD=20;(2)∵BD2+CD2=202+152=625,CB2=252=625,∴BD2+CD2=CB2,∴∠CDB=90°,∴S四邊形ABCD=SRt△ABD+SRt△CBD,=246.【考點(diǎn)】本題考查的是勾股定理與勾股定理的逆定理的應(yīng)用,掌握以上知識是解題的關(guān)鍵.2、(1),見解析;(2)【解析】【分析】(1)易證,再根據(jù)全等性質(zhì)即可求得;(2)由BC和CE可得BE,再由全等的,再根據(jù)勾股定理即可求得;【詳解】(1).證明:.在和中,.(2),..【考點(diǎn)】本題考查三角形全等和勾股定理,掌握三角形全等條件是解題的關(guān)鍵.3、4km【解析】【分析】根據(jù)題意設(shè)出BE的長為xkm,再由勾股定理列出方程求解即可.【詳解】解:設(shè)BE=xkm,則AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由題意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4.所以,EB的長是4km.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解本題的關(guān)鍵.4、(1)BD=2,;(2),【解析】【分析】(1)由勾股定理求出BC=4,再根據(jù)中點(diǎn)的性質(zhì)可得到BD,然后再一次運(yùn)用勾股定理求出AD即可;(2)設(shè),則,,利用勾股定理列出方程解,從而得解.【詳解】(1)∵在中,,,∴在中,∴又∵為邊上的中點(diǎn)∴∴在中,∴(2)折疊后如圖所示,為折痕,聯(lián)結(jié)設(shè),則,在中,,即解得:∴∴【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,也考查了折疊的性質(zhì).是常見中考題型.5、(1)見解析;(2)①30°;②2【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)求解即可;(2)①方法一:連接EP,過點(diǎn)P作GQ∥BC分別交AB,AC于點(diǎn)G,Q,易知△AGQ和△DEP均為等邊三角形,得到△ADE≌△GPD≌△QEP(AAS),即可得解;方法二:在DB上取DG=AE,證明△ADE≌△GPD(SAS),即可得解;②在DB上取DG=AE,當(dāng)時(shí),PM取得最小值,得到PM=2,PB=2,過點(diǎn)G作GH⊥BP于點(diǎn)H,利用直角三角形的性質(zhì)求解即可;【詳解】解:(1)在等邊△ABC中,∵AB=AC,∠A=∠ABC=∠C=60°,∵∠EDF=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF;(2)①方法一:如答題圖1,連接EP,過點(diǎn)P作GQ∥BC分別交AB,AC于點(diǎn)G,Q,易知△AGQ和△DEP均為等邊三角形,∴BG=CQ,∠AGQ=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF,同理∠BDF=∠EPQ,∴可證:△ADE≌△GPD≌△QEP(AAS),∴AD=GP=QE,∵CE=2AD=CQ+EQ=AD+BG,∴PG=BG,∴∠DBP=∠BPG=30°;方法二:如答題圖2,在DB上取DG=AE,∵∠AED=∠BDF又∵DP=DE,∴△ADE≌△GPD(SAS),∴PG=AD,∠PGD=60°,∵CE=AC-AE=AB-DG=AD+BG=2AD,∴BG=AD=PG,∴∠DBP=∠BPG=30°;②如答圖3,在DB上取DG=AE,由①可知∠MBP=30°,AD=BG=PG;當(dāng)時(shí),PM取得最小值;在Rt△BMP中,∠MBP=30°,BM=4,∴PM=2,PB=2;過點(diǎn)G作GH⊥BP于點(diǎn)H,∵BG=PG,∴BH=;在Rt△BGH中,∠GBP=30°,BH=∴BG=2,∴AD=BG=2.【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì)、等邊三角形的綜合應(yīng)用,準(zhǔn)確計(jì)算是解題的關(guān)鍵.6、(1)⊙M與x軸相切,理由見解析(2)6(3)【解析】【分析】(1)連接CM,證CM⊥x即可得出結(jié)論;(2)過點(diǎn)M作MN⊥AB于N,證四邊形OCMN是矩形,得MN=OC,ON=OM=5,設(shè)AN=x,則OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂徑定理得AB=2AN即可求解;(3)連接BC,CM,過點(diǎn)D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以O(shè)B=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=,在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,從而得出點(diǎn)D坐標(biāo),然后用待定系數(shù)法求出直線CD解析式即可.(1)解:⊙M與x軸相切,理由如下:連接CM,如圖,∵M(jìn)C=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵M(jìn)C是⊙M的半徑,點(diǎn)C在x軸上,∴⊙M與x軸相切;(2)解:如圖,過點(diǎn)M作MN⊥AB于N,由(1)知,∠MCO=90°,∵M(jìn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年長春市市直事業(yè)單位公開招聘高層次人才15人備考題庫附答案詳解
- 公共交通乘客服務(wù)管理制度
- 2026年武漢經(jīng)濟(jì)技術(shù)開發(fā)區(qū)官士墩中學(xué)頂崗代課教師招聘備考題庫附答案詳解
- 北京中醫(yī)藥大學(xué)東方醫(yī)院2026年護(hù)理應(yīng)屆畢業(yè)生招聘備考題庫及答案詳解1套
- 企業(yè)知識產(chǎn)權(quán)管理制度
- 2026年蘇州健雄職業(yè)技術(shù)學(xué)院公開招聘編外合同制培訓(xùn)師備考題庫及答案詳解參考
- 中國鐵道出版社有限公司2026年招聘高校畢業(yè)生備考題庫(6人)及參考答案詳解
- 2026年武義縣應(yīng)急管理局招聘備考題庫帶答案詳解
- 企業(yè)員工培訓(xùn)與技能發(fā)展路徑制度
- 企業(yè)內(nèi)部會議紀(jì)要及跟進(jìn)制度
- 湖南汽車工程職業(yè)學(xué)院單招職業(yè)技能測試參考試題庫(含答案)
- 溫度傳感器Pt100-阻值-溫度對照表(方便實(shí)用)
- 心電圖室工作總結(jié)
- 急性心肌梗死后心律失常護(hù)理課件
- 產(chǎn)品供貨方案、售后服務(wù)方案
- 十八而志夢想以行+活動設(shè)計(jì) 高三下學(xué)期成人禮主題班會
- 2023年上海華東理工大學(xué)機(jī)械與動力工程學(xué)院教師崗位招聘筆試試題及答案
- 醫(yī)院18類常用急救藥品規(guī)格清單
- 放棄公開遴選公務(wù)員面試資格聲明
- 2023-2024學(xué)年江蘇省海門市小學(xué)語文五年級期末點(diǎn)睛提升提分卷
- 北京城市旅游故宮紅色中國風(fēng)PPT模板
評論
0/150
提交評論