版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北石家莊市42中7年級數學下冊第五章生活中的軸對稱專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖所示圖形中軸對稱圖形是()A. B. C. D.2、下面四個圖形中,是軸對稱圖形的是()A. B. C. D.3、下列圖形是軸對稱圖形的是()A. B. C. D.4、如圖,直線、相交于點,為這兩條直線外一點,連接.點關于直線、的對稱點分別是點、.若,則點、之間的距離可能是()A. B. C. D.5、下列學習類APP的圖表中,可看作是軸對稱圖形的是()A. B. C. D.6、下列圖案,是軸對稱圖形的為()A. B.C. D.7、放風箏是我國人民非常喜愛的一項戶外娛樂活動,下列風箏剪紙作品中,不是軸對稱圖形的是()A. B.C. D.8、下列圖形中不是軸對稱圖形的是()A. B.C. D.9、下列圖形不是軸對稱圖形的是()A. B. C. D.10、在下列四個標志中,是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,四邊形ABCD中,AD∥BC,直線l是它的對稱軸,∠B=53°,則∠D的大小為______°.2、如圖,在3×3的正方形網格中,格線的交點稱為格點,以格點為頂點的三角形稱為格點三角形.圖中的△ABC為格點三角形.在圖中最多能畫出___個格點三角形與△ABC成軸對稱.3、如圖,在長方形ABCD中,AD=BC=5,AB=CD=12,AC=13,動點M在線段AC上運動(不與端點重合),點M關于邊AD,DC的對稱點分別為M1,M2,連接M1M2,點D在M1M2上,則在點M的運動過程中,線段M1M2長度的最小值是_______.4、如圖,直角三角形紙片的兩直角邊分別為6和8,現將△ABC折疊,使點A與點B重合,折痕為DE,則△CBE的周長是___.5、如圖,三角形紙片中,,,,沿過點的直線折疊這個三角形,使頂點落在邊上的點處,折痕為,則的周長等于______.6、如圖,將長方形沿折疊,點落在邊上的點處,點落在點處,若,則等于_______(用含的式子表示).7、如圖①,在長方形ABCD中,E點在AD上,并且∠AEB=60°,分別以BE、CE為折痕進行折疊并壓平,如圖②,若圖②中∠AED=10°,則∠DEC的度數為___度.8、如圖,ABC與關于直線l對稱,則∠B的度數為__________.9、如圖,與關于直線對稱,則∠B的度數為________°.10、如圖,直線MN是四邊形AMBN的對稱軸,點P是直線MN上的一點,寫請出一個正確的結論__.三、解答題(6小題,每小題10分,共計60分)1、如圖,在3×3的正方形的網格中,格線的交點稱為格點,以格點為頂點的三角形稱為格點三角形,圖中的△ABC為格點三角形,在圖中畫出格點△A'B'C'與△ABC成軸對稱,且點A,B,C的對稱點分別為點A',B',C'.例如,圖1、圖2中的格點△A'B'C'與△ABC成軸對稱,請你在圖3、圖4、圖5、圖6中各畫出一種格點△A'B'C',使各圖中的△A'B'C'與△ABC對稱形式不同.2、如圖所示的每幅圖形中的兩個圖案是軸對稱的嗎?如果是,指出它們的對稱軸,并找出一對對稱點.3、如圖1是4×4正方形網格,其中已有3個小方格涂成了黑色.現要從其余13個白色小方格中選出一個也涂成黑色,使整個涂成黑色的圖形成為軸對稱圖形.(1)可能的位置有種.(2)請在圖1中利用陰影標出所有可能情況.圖1備用圖4、(1)已知:如圖(甲),等腰三角形的一個內角為銳角,腰為a,求作這個等腰三角形;(2)在(1)中,把銳角變成鈍角,其他條件不變,求作這個等腰三角形.5、如圖,在數軸上A點表示數a,B點表示數b,C點表示數c,已知數b是最小的正整數,且a、c滿足.(1)a=_____,b=______,c=______;(2)若將數軸折疊,使得點A與點C重合,則點B與數______表示的點重合;(3)在(1)的條件下,數軸上的A,B,M表示的數為a,b,y,是否存在點M,使得點M到點A,點B的距離之和為6?若存在,請求出y的值;若不存在,請說明理由.(4)點A、B、C開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,求AB、AC、BC的長(用含t的式子表示).6、如圖,已知△ABC和直線l,作出△ABC關于直線l的對稱圖形△A'B'C′.(不寫作法,保留作圖痕跡)-參考答案-一、單選題1、C【分析】根據軸對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,進行逐一判斷即可【詳解】解:A、不是軸對稱圖形,不符合題意;B、不是軸對稱圖形,不符合題意;C、是軸對稱圖形,符合題意;D、不是軸對稱圖形,不符合題意;故選C.【點睛】本題主要考查了軸對稱圖形的識別,熟知軸對稱圖形的定義是解題的關鍵.2、D【分析】根據軸對稱圖形的定義判斷即可.【詳解】∵不是軸對稱圖形,∴A不符合題意;∵不是軸對稱圖形,∴B不符合題意;∵不是軸對稱圖形,∴C不符合題意;∵是軸對稱圖形,∴D符合題意;故選D.【點睛】本題考查了軸對稱圖形即沿直線折疊,直線兩旁的部分能夠完全重合的圖形,熟記定義是解題的關鍵.3、C【分析】根據軸對稱圖形的概念解答即可.【詳解】A.不是軸對稱圖形,故本選項錯誤;B.不是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項正確;D.不是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、B【分析】由對稱得OP1=OP=3.5,OP=OP2=3.5,再根據三角形任意兩邊之和大于第三邊,即可得出結果.【詳解】連接,,,如圖:點關于直線,的對稱點分別是點,,,,,,故選:.【點睛】本題考查線軸對稱的性質以及三角形三邊關系,解本題的關鍵熟練掌握對稱性和三角形邊長的關系.5、C【分析】根據軸對稱圖形的定義逐一進行判斷即可得答案.【詳解】A.不是軸對稱圖形,故該選項不符合題意,B.不是軸對稱圖形,故該選項不符合題意,C.是軸對稱圖形,故該選項符合題意,D.不是軸對稱圖形,故該選項不符合題意,故選:C.【點睛】本題考查的是軸對稱圖形,如果一個圖形沿著一條直線對折后兩部分完全重合,那么這樣的圖形就叫做軸對稱圖形;軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.6、D【分析】根據軸對稱圖形的概念對個圖形分析判斷即可得解.【詳解】解:A、此圖形不是軸對稱圖形,不符合題意;B、此圖形不是軸對稱圖形,不合題意;C、此圖形是軸對稱圖形,不合題意;D、此圖形是軸對稱圖形,合題意;故選D.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、B【分析】根據軸對稱圖形的概念求解.在平面內,如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.【詳解】解:A、是軸對稱圖形,故此選項不合題意;B、不是軸對稱圖形,故此選項符合題意;C、是軸對稱圖形,故此選項不合題意;D、是軸對稱圖形,故此選項不合題意.故選:B.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.8、C【詳解】解:A、是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,故本選項符合題意;D、是軸對稱圖形,故本選項不符合題意;故選:C【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握沿對稱軸折疊后,兩部分能夠完全重合的圖形是軸對稱圖形是解題的關鍵.9、B【分析】根據如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析即可.【詳解】選項A、C、D能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,選項B不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,故選:B.【點睛】此題主要考查了軸對稱圖形,關鍵是正確確定對稱軸位置.10、B【分析】軸對稱圖形的定義:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,據此逐項判斷即可.【詳解】解:A中圖形不是軸對稱圖形,不符合題意;B中圖形是軸對稱圖形,符合題意;C中圖形不是軸對稱圖形,不符合題意;D中圖形不是軸對稱圖形,不符合題意,故選:B.【點睛】本題考查軸對稱的定義,理解定義,找準對稱軸是解答的關鍵.二、填空題1、127【分析】根據軸對稱性質得出∠C=∠B=53°,根據平行線性質得出∠C+∠D=180°即可.【詳解】解:直線l是四邊形ABCD的對稱軸,∠B=53°,∴∠C=∠B=53°,∵AD∥BC,∴∠C+∠D=180°,∴∠D=180°-53°=127°.故答案為:127.【點睛】本題考查軸對稱性質,平行線性質,求一個角的的補角,掌握軸對稱性質,平行線性質,求一個角的的補角.2、6【分析】根據網格結構分別確定出不同的對稱軸,然后作出軸對稱三角形即可得解【詳解】解:如圖,以AB的中垂線為對稱軸如圖1,以BC邊所在直線為對稱軸如圖2,以AB邊所在三網格中間網格的垂直平分線為對稱軸如圖3,以BC邊中垂線為對稱軸,以3×3網格的對角線所在直線為對稱軸如圖5,圖6,最多能畫出6個格點三角形與△ABC成軸對稱.故答案為:6.【點睛】本題考查了利用軸對稱變換作圖,熟練掌握網格結構并準確找出對應點的位置是解題的關鍵,本題難點在于確定出不同的對稱軸.3、【分析】過D作于,連接,根據題意可得,從而可以判定M1M2最小值為,即可求解.【詳解】解:過D作于,連接,如圖:長方形ABCD中,AD=BC=5,AB=CD=12,AC=13,∴∴,∵M關于邊AD,DC的對稱點分別為M1,M2,∴DM1=DM=DM2,∴,線段M1M2長度最小即是DM長度最小,此時DM⊥AC,即M與重合,M1M2最小值為.故答案為:.【點睛】此題考查了軸對稱的性質,掌握軸對稱的有關性質將的最小值轉化為的最小值是解題的關鍵.4、14【分析】根據圖形翻折變換的性質得出AE=BE,進而可得出△CBE的周長=AC+BC.【詳解】解:∵△BDE是△ADE翻折而成,∴AE=BE,∴△CBE的周長=BC+BE+CE=BC+AE+CE=BC+AC,∵角三角形紙片的兩直角邊長分別為6和8,∴△CBE的周長是14.故答案為:14.【點睛】本題考查的是圖形翻折變換的性質,熟知“折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等”的知識是解答此題的關鍵.5、9【分析】根據折疊可得BE=BC=7,CD=DE,進而求出AE,將△AED的周長轉化為AC+AE,求出結果即可.【詳解】解:由折疊得,BE=BC=7,CD=DE,∴AE=AB﹣BE=10﹣7=3cm,∴△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm),故答案為:9.【點睛】考查折疊軸對稱的性質,將三角形的周長轉化為AC+AE是解決問題的關鍵.6、【分析】根據折疊得出∠DEF=∠HEF,∠EFG=∠EFC,求出∠DEF的度數,根據平行線的性質得出∠DEF+∠EFC=180°,∠BFE=∠DEF,代入即可求出∠EFG,進而求出∠BFG.【詳解】解:∵將長方形ABCD沿EF折疊,點D落在AB邊上的H點處,點C落在點G處,∴∠DEF=∠HEF,∠EFG=∠EFC,∵∠AEH=m°,∴∠DEF=∠HEF=(180°-∠AEH)=(180°-m°),∵四邊形ABCD是長方形,∴AD∥BC,EH∥FG,∴∠DEF+∠EFC=180°,∠BFE=∠DEF=(180°-m°),∴∠EFG=∠EFC=180°-(180°-m°)=90°+m°,∴∠BFG=∠EFG-∠BFE=90°+m°-(180°-m°)=m°,故答案為:m.【點睛】本題考查了平行線的性質,折疊的性質等知識點,根據平行線的性質求出∠BFE=∠DEF和∠DEF+∠EFC=180°是解此題的關鍵.7、35【分析】由折疊可得BE平分,CE平分,再利用角的和差得到=180°-120°+10°=70°,進而可得答案.【詳解】解:由折疊可得BE平分,CE平分,∵∠AEB=60°,∴=2∠AEB=120°,∵,∴∴∠CED=.故答案為:35.【點睛】本題考查角的和差關系,軸對稱的性質,根據折疊的性質得到BE平分,CE平分是解本題關鍵.8、100°【分析】根據軸對稱的性質可得≌,再根據和的度數即可求出的度數.【詳解】解:∵與關于直線l對稱∴≌∴,∴故答案為:【點睛】本題主要考查了軸對稱的性質以及全等的性質,熟練掌握軸對稱的性質和全等的性質是解答此題的關鍵.9、105°【分析】根據軸對稱的性質,軸對稱圖形全等,則∠A=∠A′,∠B=∠B′,∠C=∠C′,再根據三角形內角和定理即可求得.【詳解】∵△ABC與△A′B′C′關于直線l對稱,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=∠C′=40°,∠A=∠A′=35°∴∠B=180°?35°?40°=105°.故答案為:105°.【點睛】本題考查了軸對稱圖形的性質,全等的性質,三角形內角和定理,理解軸對稱圖形的性質是解題的關鍵.10、AP=BP(答案不唯一)【分析】根據軸對稱圖形的性質,即可求解.【詳解】解:∵直線MN是四邊形AMBN的對稱軸,∴AP=BP.故答案為:AP=BP(答案不唯一)【點睛】本題主要考查了軸對稱圖形的性質,熟練掌握軸對稱圖形的關鍵是找到對稱軸,圖形關于對稱軸折疊前后對應線段相等,對應角相等是解題的關鍵.三、解答題1、見解析.【分析】根據網格結構分別確定出不同的對稱軸,然后作出軸對稱三角形即可得解.【詳解】解:如圖,△A'B'C'即為所求.【點睛】本題考查了利用軸對稱變換作圖,熟練掌握網格結構并準確找出對應點的位置是解題的關鍵,本題難點在于確定出不同的對稱軸.2、第(1)(3)是軸對稱圖形,對稱軸和對稱點見解析.【分析】根據軸對稱圖形的定義確定是軸對稱圖形,連接兩對對應點,然后作經過兩對對應點連線中點的直線即可.【詳解】解:第(1)(3)是軸對稱圖形,(2)不是軸對稱圖形,點A、B是一對對稱點,直線l是對稱軸,如圖(1)所示;點C、D是一對對稱點,直線m是對稱軸,如圖(3)所示..【點睛】本題考查了軸對稱圖形,以及軸對稱圖形的性質,主要考查了對稱軸的確定方法,是基礎題,需熟記.注意:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.3、(1)4;(2)見解析【分析】直接利用軸對稱圖形的性質分別得出符合題意的答案.【詳解】解:(1)可能的位置有4種,故答案為:4;(2)如圖所示:,【點睛】本題主要考查了利用軸對稱設計圖案,正確把握軸對稱圖形的定義是解題關鍵.4、(1)答案見解析;(2)答案見解析.【分析】(1)分成是頂角和頂角兩種情況進行討論,當是底角時,首先作一個∠A=,在一邊上截取AB=a,然后過B作另一邊的垂線BR,然后在AR的延長線上截取RC=AR,連接BC,即可得到三角形,當是頂角時,作∠D=,在角的兩邊上截取DE=DF=a,則△DEF就是所求三角形;(2)作∠M=,在角的邊上截取MN=MH,則△MNH就是所求.【詳解】(1)如圖所示:△ABC和△DEF都是所求的三角形;(2)如圖所示:△MNH是所求的三角形.【點睛】本題考查了三角形的作法,正確進行討論,理解等腰三角形的性質:三線合一定理,是關鍵.5、(1)-2,1,7;(2)4;(3)存在這樣的點M,對應的y=2.5或y=-3.5;(4)3t+3,5t+9,2t+6.【分析】(1)根據非負數的性質得出,解方程可求,根據數b是最小的正整數,可得b=1即可;(2)先求出折點表示的是,然后點B到折點的距離,利用有理數加法即可出點B對稱點;(3)由題意知AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅省武威市第五中學2026屆高三上英語期末達標檢測試題含解析
- 社團聯合活動策劃方案(3篇)
- 門診團建活動策劃方案(3篇)
- 福建省長樂高級中學2026屆高三語文第一學期期末達標檢測模擬試題含解析
- 太陽慶?;顒硬邉澐桨?3篇)
- 2025年揚州市公安局邗江分局招聘警務輔助人員筆試真題
- 罕見病患者社會融入的促進策略-1-1
- 罕見病患者的醫(yī)療資源公平分配策略
- 罕見病康復中的康復資源整合策略
- 2026廣東茂名市公安局濱海新區(qū)分局招聘警務輔助人員20人備考題庫(第一次)及參考答案詳解
- 2026中國國際航空招聘面試題及答案
- (2025年)工會考試附有答案
- 2026年國家電投集團貴州金元股份有限公司招聘備考題庫完整參考答案詳解
- 復工復產安全知識試題及答案
- 中燃魯西經管集團招聘筆試題庫2026
- 資產接收協議書模板
- 華潤燃氣2026屆校園招聘“菁英計劃·管培生”全面開啟備考考試題庫及答案解析
- 數據中心合作運營方案
- 印鐵涂料基礎知識
- 工資欠款還款協議書
- 石籠網廠施工技術交底
評論
0/150
提交評論