版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,在△ABC中,∠ABC=90°,tan∠BAC=,AD=2,BD=4,連接CD,則CD長的最大值是(
)A. B. C. D.2+22、二次函數(shù)y=x2+px+q,當(dāng)0≤x≤1時,此函數(shù)最大值與最小值的差(
)A.與p、q的值都有關(guān) B.與p無關(guān),但與q有關(guān)C.與p、q的值都無關(guān) D.與p有關(guān),但與q無關(guān)3、把拋物線向右平移2個單位,然后向下平移1個單位,則平移后得到的拋物線解析式是(
)A. B.C. D.4、若關(guān)于x的二次函數(shù)y=ax2+bx的圖象經(jīng)過定點(1,1),且當(dāng)x<﹣1時y隨x的增大而減小,則a的取值范圍是()A. B. C. D.5、如圖,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D從A出發(fā)沿AC方向以1cm/s向終點C勻速運動,過點D作DEAB交BC于點E,過點E作EF⊥BC交AB于點F,當(dāng)四邊形ADEF為菱形時,點D運動的時間為()sA. B. C. D.6、如圖,將一張寬為2cm的長方形紙片沿AB折疊成如圖所示的形狀,那么折痕AB的長為(
)cmA. B. C.2 D.二、多選題(7小題,每小題2分,共計14分)1、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構(gòu)成的圖形記作C2,將C1和C2構(gòu)成的圖形記作C3.關(guān)于圖形C3,給出的下列四個結(jié)論,正確的是(
)A.圖形C3恰好經(jīng)過4個整點(橫、縱坐標(biāo)均為整數(shù)的點)B.圖形C3上任意一點到原點的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π2、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(
)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.3、在Rt△ABC中,∠C=90°,下列式子一定成立的是(
)A.sinA=sinB B.cosA=sinB C.sinA=cosB D.∠A+∠B=90°4、如圖,在2×3的方格中,畫有格點△ABC,下列選項的方格中所畫格點三角形(陰影部分)與△ABC不相似的是()A. B. C. D.5、在△ABC中,∠C=90°,下列各式一定成立的是(
)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA6、如圖,在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,下面等式中正確的是(
)A. B.C. D.7、如圖,AB是的直徑,C是上一點,E是△ABC的內(nèi)心,,延長BE交于點F,連接CF,AF.則下列結(jié)論正確的是(
)A. B.C.△AEF是等腰直角三角形 D.若,則第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、二次函數(shù)的最大值是__________.2、如圖,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直線互相垂直,的值為___.3、cos45°-tan60°=________;4、如圖,是⊙O的內(nèi)接正三角形,點是圓心,點,分別在邊,上,若,則的度數(shù)是____度.5、兩個任意大小的正方形,都可以適當(dāng)剪開,拼成一個較大的正方形,如用兩個邊長分別為,的正方形拼成一個大正方形.圖中的斜邊的長等于________(用,的代數(shù)式表示).6、如果二次函數(shù)的圖像在它的對稱軸右側(cè)部分是上升的,那么的取值范圍是__________.7、如圖,在RT△ABC中,,,,是斜邊上方一點,連接,點是的中點,垂直平分,交于點,連接,交于點,當(dāng)為直角三角形時,線段的長為________.四、解答題(6小題,每小題10分,共計60分)1、某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件,如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設(shè)每件商品的售價x元(x為整數(shù)),每個月的銷售量為y件.(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;(2)設(shè)每月的銷售利潤為W,請直接寫出W與x的函數(shù)關(guān)系式.2、已知關(guān)于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關(guān)系;(3)若將拋物線沿軸翻折得到新拋物線,當(dāng)時,新拋物線對應(yīng)的函數(shù)有最小值3,求的值.3、如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當(dāng)?shù)闹荛L最小時,點的坐標(biāo)為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標(biāo);(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.4、某校一棵大樹發(fā)生一定的傾斜,該樹與地面的夾角.小明測得某時大樹的影子頂端在地面處,此時光線與地面的夾角;又過了一段時間,測得大樹的影子頂端在地面處,此時光線與地面的夾角,若米,求該樹傾斜前的高度(即的長度).(結(jié)果保留一位小數(shù),參考數(shù)據(jù):,,,).5、某廠家生產(chǎn)一批遮陽傘,每個遮陽傘的成本價是20元,試銷售時發(fā)現(xiàn):遮陽傘每天的銷售量y(個)與銷售單價x(元)之間是一次函數(shù)關(guān)系,當(dāng)銷售單價為28元時,每天的銷售量為260個;當(dāng)銷售單價為30元時,每天的銷售量為240個.(1)求遮陽傘每天的銷出量y(個)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)設(shè)遮陽傘每天的銷售利潤為w(元),當(dāng)銷售單價定為多少元時,才能使每天的銷售利潤最大?最大利潤是多少元?6、如圖,矩形在平面直角坐標(biāo)系中,交軸于點,動點從原點出發(fā),以每秒1個單位長度的速度沿軸正方向移動,移動時間為秒,過點P作垂直于軸的直線,交于點M,交或于點N,直線掃過矩形的面積為.(1)求點的坐標(biāo);(2)求直線移動過程中到點之前的關(guān)于的函數(shù)關(guān)系式;(3)在直線移動過程中,第一象限的直線上是否存在一點,使是等腰直角三角形?若存在,直接寫出點的坐標(biāo);若不存在,說明理由-參考答案-一、單選題1、B【解析】【分析】過點A作∠DAP=∠BAC,過點D作AD⊥DP交AP于點P,分別求出PD,PC,在△PDC中,利用三角形的三邊關(guān)系即可求出CD長的最大值.【詳解】解:如圖,過點A作∠DAP=∠BAC,過點D作AD⊥DP交AP于點P,∵∠ABC=90°,,∴,∴,∵AD=2,∴DP=1,∵∠DAP=∠BAC,∠ADP=∠ABC,∴△ADP∽△ABC,∴,∵∠DAB=∠DAP+∠PAB,∠PAC=∠PAB+∠BAC,∠DAP=∠BAC,∴∠DAB=∠PAC,,∴△ADB∽△APC,∴,∵,∴,∴,,在△PDC中,∵PD+PC>DC,PC?PD<DC,∴,當(dāng)D,P,C三點共線時,DC最大,最大值為,故選:B.【考點】本題考查了銳角三角函數(shù)的定義,相似三角形的判定和性質(zhì),勾股定理,三角形的三邊關(guān)系,構(gòu)造相似三角形是解題的關(guān)鍵.2、D【解析】【分析】分別求出函數(shù)解析式的最小值、當(dāng)0≤x≤1時端點值即:當(dāng)x=0和x=1時的函數(shù)值.由二次函數(shù)性質(zhì)可知此函數(shù)最大值與最小值必是其中的兩個,通過比較可知差值與p有關(guān),但與q無關(guān)【詳解】解:依題意得:當(dāng)時,端點值,當(dāng)時,端點值,當(dāng)時,函數(shù)最小值,由二次函數(shù)的最值性質(zhì)可知,當(dāng)0≤x≤1時,此函數(shù)最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關(guān),但與q無關(guān)故選:.【考點】本題考查了二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)、靈活運用配方法是解題的關(guān)鍵.3、D【解析】【分析】直接根據(jù)“左加右減,上加下減”的原則進行解答即可.【詳解】由“左加右減”的原則可知,拋物線y=2x2向右平移2個單位所得拋物線是y=2(x?2)2;由“上加下減”的原則可知,拋物線y=2(x?2)2向下平移1個單位所得拋物線是y=2(x?2)2?1.故選D.【考點】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是掌握二次函數(shù)圖象與幾何變換.4、D【解析】【分析】根據(jù)題意開口向上,且對稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數(shù)y=ax2+bx可知拋物線過原點,∵拋物線定點(1,1),且當(dāng)x<-1時,y隨x的增大而減小,∴拋物線開口向上,且對稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標(biāo)特征,根據(jù)題意得關(guān)于a的不等式組是解題的關(guān)鍵.5、D【解析】【分析】由勾股定理可求AB的長,由銳角三角函數(shù)可得,即可求解.【詳解】解:設(shè)經(jīng)過t秒后,四邊形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故選:D.【考點】本題考查了菱形的性質(zhì),勾股定理,銳角三角函數(shù)等知識,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.6、A【解析】【分析】作點A作,交BC于點D,作點B作,交AC于點E,根據(jù)長方形紙條的寬得出,繼而可證明是等邊三角形,則有,然后在直角三角形中利用銳角三角函數(shù)即可求出AB的值.【詳解】作點A作,交BC于點D,作點B作,交AC于點E,∵長方形的寬為2cm,,,.∴是等邊三角形,故選:A.【考點】本題主要考查等邊三角形的判定及性質(zhì),銳角三角函數(shù),掌握等邊三角形的判定及性質(zhì)和特殊角的三角函數(shù)值是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】畫出圖象C3,以及以O(shè)為圓心,以1為半徑的圓,再作出⊙O內(nèi)接正方形,根據(jù)圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經(jīng)過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個整點,故正確;B.由圖象可知,圖形C3上任意一點到原點的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內(nèi)接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點】本題考查了二次函數(shù)的圖象與幾何變換,數(shù)形結(jié)合是解題的關(guān)鍵.2、ABD【解析】【分析】根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對A、B、C進行判斷;根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.3、BCD【解析】【分析】根據(jù)互為余角的三角函數(shù)關(guān)系,可判斷A、B、C;根據(jù)直角三角形的性質(zhì),可判斷D.【詳解】解:∵∠C=90°,∴∠A+∠B=90°,A、A≠B時,sinA≠sinB,故A錯誤;B、∵∠A+∠B=90°,∴cosA=sinB,故B正確;C、∵∠A+∠B=90°,∴sinA=cosB,故C正確;D、∵∠C=90°,∴∠A+∠B=90°,故D正確;故選:BCD.【考點】本題考查了互余兩角三角函數(shù)的關(guān)系,熟記同角(或余角)的三角函數(shù)關(guān)系式是解題的關(guān)鍵.4、BCD【解析】【分析】先判斷格中所畫格點三角形為直角三角形,利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,否則不相似,對各選項進行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項中,三條線段的長為,因為,此三角形為直角三角形,長直角邊與短直角邊的比為2,所以A選項的方格中所畫格點三角形(陰影部分)與△ABC相似,不符合題意;B選項中,長直角邊與短直角邊的比為3,所以B中格點三角形與△ABC不相似,符合題意;C選項中,三條線段的長為√,因為,此三角形為直角三角形,兩直角邊的比為1,所以C選項的方格中所畫格點三角形(陰影部分)與△ABC不相似,符合題意;D選項中,三角形的兩直角邊的比為1:1.所以D中格點三角形與△ABC不相似,符合題意,故選:BCD.【考點】本題考查相似三角形的判定,能在格點中表示各個線段的長度和掌握相似三角形的判定定理是解決此題的關(guān)鍵.5、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對各選項分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項A錯誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.6、ABD【解析】【分析】先根據(jù)同角的余角相等得出∠G=∠EFH,再根據(jù)三角函數(shù)的定義求解即可.【詳解】解:∵在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以選項A、B、D都是正確的,故選:ABD.【考點】本題利用了同角的余角相等和銳角三角函數(shù)的定義解答,屬較簡單題目.7、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關(guān)鍵.三、填空題1、8【解析】【分析】二次函數(shù)的頂點式在x=h時有最值,a>0時有最小值,a<0時有最大值,題中函數(shù),故其在時有最大值.【詳解】解:∵,∴有最大值,當(dāng)時,有最大值8.故答案為8.【考點】本題考查了二次函數(shù)頂點式求最值,熟練掌握二次函數(shù)的表達式及最值的確定方法是解題的關(guān)鍵.2、【解析】【分析】延長AD交GB于點M,交BC的延長線于點H,則AHBH,由線段垂直平分線的性質(zhì)得出GA=GB,GD=GC,由SAS證明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先證出∠AGB=∠DGC,由,證出△AGB△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出,即可得出的值.【詳解】解:延長AD交GB于點M,交BC的延長線于點H,如圖所示:則AHBH,GE是AB的垂直平分線,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考點】本題是相似三角形綜合題目,考查了線段垂直平分線的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、銳角三角函數(shù)等知識,本題難度較大,綜合性強,解題的關(guān)鍵是通過作輔助線綜合運用全等三角形和相似三角形的性質(zhì).3、【解析】【分析】根據(jù)特殊角的三角函數(shù)值進行計算.【詳解】解:原式.故答案是:.【考點】本題考查特殊角的三角函數(shù)值,解題的關(guān)鍵是記住特殊角的三角函數(shù)值.4、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進行轉(zhuǎn)化,構(gòu)造輔助線是本題難點,全等以及垂徑定理的應(yīng)用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.5、【解析】【分析】根據(jù)題意及勾股定理可得BC2=;又因Rt△ABC的邊BC在斜邊AB上的射影為a,根據(jù)射影定理可得BC2=a?AB,由此即可解答.【詳解】根據(jù)題意及勾股定理可得:BC2=;由題意可得:Rt△ABC的邊BC在斜邊AB上的射影為a,∴BC2=a?AB,即可得AB=.故答案為.【考點】本題考查射影定理的知識,注意掌握每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項.6、【解析】【分析】由題意得:二次函數(shù)的圖像開口向上,進而,可得到答案.【詳解】∵二次函數(shù)的圖像在它的對稱軸右側(cè)部分是上升的,∴二次函數(shù)的圖像開口向上,∴.故答案是:【考點】本題主要考查二次函數(shù)圖象和二次函數(shù)的系數(shù)之間的關(guān)系,掌握二次函數(shù)的系數(shù)的幾何意義,是解題的關(guān)鍵.7、或【解析】【分析】(1)分別在、、中應(yīng)用含角的直角三角形的性質(zhì)以及勾股定理求得,,再根據(jù)垂直平分線的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據(jù)垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)、分線段成比例定理可證得,然后根據(jù)平行線的性質(zhì)、相似三角形的判定和性質(zhì)列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當(dāng)時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設(shè),則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當(dāng)時,連接、交于點,過點作于,如圖2:設(shè),則,∵垂直平分線段,點是的中點∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點】本題考查了垂直平分線的性質(zhì)和判定、含角的直角三角形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、平行線的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數(shù)學(xué)思想.四、解答題1、(1);(2)【解析】【分析】(1)根據(jù)題意先分類討論,當(dāng)售價超過50元但不超過80元時,上漲的價格是元,就少賣件,用原來的210件去減得到銷售量;當(dāng)售價超過80元,超過80的部分是元,就少賣件,用原來的210件先減去售價從50漲到80之間少賣的30件再減去得到最終的銷售量.(2)根據(jù)利潤=(售價-成本)銷量,現(xiàn)在的單件利潤是元,再去乘以(1)中兩種情況下的銷售量,得到銷售利潤關(guān)于售價的式子.【詳解】(1)當(dāng)時,,即.當(dāng)時,,即,則(2)由利潤=(售價-成本)×銷售量可以列出函數(shù)關(guān)系式為【考點】本題考查二次函數(shù)實際應(yīng)用中的利潤問題,關(guān)鍵在于根據(jù)題意列出銷量與售價之間的一次函數(shù)關(guān)系式以及熟悉求利潤的公式,需要注意本題要根據(jù)售價的不同范圍進行分類討論,結(jié)果要寫成分段函數(shù)的形式,還要標(biāo)上的取值范圍.2、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當(dāng)拋物線開口向上時,誰離對稱軸遠誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關(guān)系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠對應(yīng)的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當(dāng)時,有最小值∴解得,∵∴②若,即,則當(dāng)時,有最小值-1不合題意,舍去③若,,則當(dāng)時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關(guān)系來確定二次函數(shù)的最值是解本題的關(guān)鍵.3、(1);(2);(3)面積最大為,點坐標(biāo)為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標(biāo)為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當(dāng)EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質(zhì)可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關(guān)于直線對稱,當(dāng)點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設(shè)直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設(shè),則,當(dāng)時,面積最大為,此時點坐標(biāo)為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設(shè)N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標(biāo)為(,),(,),(,).【考點】本題考查二次函數(shù)與幾何圖形的綜合題,熟練掌握二次函數(shù)的性質(zhì),靈活運用數(shù)形結(jié)合思想得到坐標(biāo)之間的關(guān)系是解題的關(guān)鍵.4、該樹傾斜前高度約為11.3米.【解析】【分析】過A作AH⊥BC于E,解直角三角形即可得到結(jié)論.【詳解】過作于,∵,∴為等腰三角形,設(shè),∵,∴,又在中,∵,∴,即,∴,即,又在中,∴,∴.答:該樹傾斜前高度約為11.3米.【考點】本題考查的是解直角三角形的應(yīng)用?仰角俯角問題,掌握銳角三角函數(shù)的定義、仰角俯角的概念是解題的關(guān)鍵.5、(1)y=﹣10x+540;(2)當(dāng)銷售單價定為37元時,才能使每天的銷售利潤最大,最大利潤是2890元【解析】【分析】(1)設(shè)函數(shù)關(guān)系式為y=kx+b,由銷售單價為28元時,每天的銷售量為260個;銷售單價為30元時,每天的銷量為240個;列方程組求解即可;(2)由每天銷售利潤=每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四下10.我們當(dāng)?shù)氐娘L(fēng)俗 授課+說課課件
- 藍色大氣年終工作匯報總結(jié)模板
- 2025年博白縣消防救援大隊公開招聘政府專職消防員備考題庫帶答案詳解
- 鞋店促銷話術(shù)
- 班級聚會懲罰課件
- 我國醫(yī)患關(guān)系發(fā)展趨勢
- 消防安全逃生預(yù)案模板
- 舉辦消防安全知識競賽
- 浙江省四校聯(lián)考2025-2026學(xué)年高二上學(xué)期期中聯(lián)考英語試題
- 2025年新型智能物流中心貨架自動補貨算法技術(shù)創(chuàng)新分析
- 中國法律史-第一次平時作業(yè)-國開-參考資料
- 中外石油文化智慧樹知到期末考試答案章節(jié)答案2024年中國石油大學(xué)(華東)
- 梅蘭芳的【梅蘭芳簡介梅蘭芳簡歷】
- 《旅游電子商務(wù)》試題及答案完整版
- 蜂膠全方位介紹教學(xué)課件
- 名校版高中數(shù)學(xué)基礎(chǔ)知識全歸納(填空版+表格版+思維導(dǎo)圖)
- 高中語文新課標(biāo)必背古詩文72篇
- 醫(yī)院收費員考試試題及答案
- 病理生理學(xué)案例復(fù)習(xí)題
- 大型船舶建造設(shè)施項目船塢及碼頭工程施工組織設(shè)計
- GB/T 20469-2006臨床實驗室設(shè)計總則
評論
0/150
提交評論