河南省2026屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
河南省2026屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
河南省2026屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
河南省2026屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
河南省2026屆畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省2026屆畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.2.用尺現(xiàn)作圖的方法在一個平行四邊形內作菱形,下列作法錯誤的是()A. B. C. D.3.計算(﹣3)﹣(﹣6)的結果等于()A.3B.﹣3C.9D.184.如圖,已知,用尺規(guī)作圖作.第一步的作法以點為圓心,任意長為半徑畫弧,分別交,于點,第二步的作法是()A.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點B.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點C.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點D.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點5.下列運算正確的是()A.a3?a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+46.把多項式ax3﹣2ax2+ax分解因式,結果正確的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)27.若分式有意義,則a的取值范圍是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切實數(shù)8.如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣29.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.10.已知拋物線的圖像與軸交于、兩點(點在點的右側),與軸交于點.給出下列結論:①當?shù)臈l件下,無論取何值,點是一個定點;②當?shù)臈l件下,無論取何值,拋物線的對稱軸一定位于軸的左側;③的最小值不大于;④若,則.其中正確的結論有()個.A.1個 B.2個 C.3個 D.4個11.方程x2﹣kx+1=0有兩個相等的實數(shù)根,則k的值是()A.2 B.﹣2 C.±2 D.012.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.14.閱讀理解:引入新數(shù)i,新數(shù)i滿足分配律、結合律、交換律,已知i2=﹣1,那么(1+i)?(1﹣i)的平方根是_____.15.七巧板是我們祖先的一項創(chuàng)造,被譽為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據七巧板制作過程的認識,求出平行四邊形EFGH_____.16.已知A(﹣4,y1),B(﹣1,y2)是反比例函數(shù)y=﹣圖象上的兩個點,則y1與y2的大小關系為__________.17.函數(shù)y=中,自變量x的取值范圍為_____.18.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.20.(6分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.21.(6分)武漢二中廣雅中學為了進一步改進本校九年級數(shù)學教學,提高學生學習數(shù)學的興趣.校教務處在九年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調查:我們從所調查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:“非常喜歡”、“比較喜歡”、“不太喜歡”、“很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計.現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據以上提供的信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是,圖②中所在扇形對應的圓心角是;(3)若該校九年級共有960名學生,請你估算該年級學生中對數(shù)學學習“不太喜歡”的有多少人?22.(8分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構造一系列的正方形,它們之間的邊滿足一定的關系,并且一個比一個小.操作步驟作法由操作步驟推斷(僅選取部分結論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構造第三個正方形CHIJ這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).23.(8分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關聯(lián)點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關聯(lián)點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關聯(lián)點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,求n的取值范圍.24.(10分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.25.(10分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.26.(12分)如圖,在平面直角坐標系中,直線y=x+4與x軸、y軸分別交于A、B兩點,拋物線y=-x2+bx+c經過A、B兩點,并與x軸交于另一點C(點C點A的右側),點P是拋物線上一動點.(1)求拋物線的解析式及點C的坐標;(2)若點P在第二象限內,過點P作PD⊥軸于D,交AB于點E.當點P運動到什么位置時,線段PE最長?此時PE等于多少?(3)如果平行于x軸的動直線l與拋物線交于點Q,與直線AB交于點N,點M為OA的中點,那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.27.(12分)如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最小?如果存在,求出點的坐標;如果不存在,說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.2、A【解析】

根據菱形的判定方法一一判定即可【詳解】作的是角平分線,只能說明四邊形ABCD是平行四邊形,故A符合題意B、作的是連接AC,分別做兩個角與已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四邊形ABCD為菱形,B不符合題意C、由輔助線可知AD=AB=BC,又AD∥BC,所以四邊形ABCD為菱形,C不符合題意D、作的是BD垂直平分線,由平行四邊形中心對稱性質可知AC與BD互相平分且垂直,得到四邊形ABCD是菱形,D不符合題意故選A【點睛】本題考查平行四邊形的判定,能理解每個圖的作法是本題解題關鍵3、A【解析】原式=?3+6=3,故選A4、D【解析】

根據作一個角等于已知角的作法即可得出結論.【詳解】解:用尺規(guī)作圖作∠AOC=2∠AOB的第一步是以點O為圓心,以任意長為半徑畫?、?,分別交OA、OB于點E、F,

第二步的作圖痕跡②的作法是以點F為圓心,EF長為半徑畫?。?/p>

故選:D.【點睛】本題考查的是作圖-基本作圖,熟知作一個角等于已知角的步驟是解答此題的關鍵.5、C【解析】

直接利用同底數(shù)冪的乘除運算法則、負指數(shù)冪的性質、二次根式的加減運算法則、平方差公式分別計算即可得出答案.【詳解】A、a3?a2=a5,故A選項錯誤;B、a﹣2=,故B選項錯誤;C、3﹣2=,故C選項正確;D、(a+2)(a﹣2)=a2﹣4,故D選項錯誤,故選C.【點睛】本題考查了同底數(shù)冪的乘除運算以及負指數(shù)冪的性質以及二次根式的加減運算、平方差公式,正確掌握相關運算法則是解題關鍵.6、D【解析】

先提取公因式ax,再根據完全平方公式把x2﹣2x+1繼續(xù)分解即可.【詳解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故選D.【點睛】本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.7、A【解析】分析:根據分母不為零,可得答案詳解:由題意,得,解得故選A.點睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關鍵.8、C【解析】

先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點分別為△ACF、△CEF的內心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點P是△ACF的內心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點睛】本題是三角形的內切圓與內心,主要考查了三角形的內心的特點,三角形的全等,解本題的關鍵是知道三角形的內心的意義.9、D【解析】

根據軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內,把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,是中心對稱圖形,故不符合題意;C.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;D.既是軸對稱圖形又是中心對稱圖形,故符合題意.故選D.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關鍵.10、C【解析】

①利用拋物線兩點式方程進行判斷;

②根據根的判別式來確定a的取值范圍,然后根據對稱軸方程進行計算;

③利用頂點坐標公式進行解答;

④利用兩點間的距離公式進行解答.【詳解】①y=ax1+(1-a)x-1=(x-1)(ax+1).則該拋物線恒過點A(1,0).故①正確;

②∵y=ax1+(1-a)x-1(a>0)的圖象與x軸有1個交點,

∴△=(1-a)1+8a=(a+1)1>0,

∴a≠-1.

∴該拋物線的對稱軸為:x=,無法判定的正負.

故②不一定正確;

③根據拋物線與y軸交于(0,-1)可知,y的最小值不大于-1,故③正確;

④∵A(1,0),B(-,0),C(0,-1),

∴當AB=AC時,,解得:a=,故④正確.

綜上所述,正確的結論有3個.

故選C.【點睛】考查了二次函數(shù)與x軸的交點及其性質.(1).拋物線是軸對稱圖形.對稱軸為直線x=-,對稱軸與拋物線唯一的交點為拋物線的頂點P;特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0);(1).拋物線有一個頂點P,坐標為P(-b/1a,(4ac-b1)/4a),當-=0,〔即b=0〕時,P在y軸上;當Δ=b1-4ac=0時,P在x軸上;(3).二次項系數(shù)a決定拋物線的開口方向和大??;當a>0時,拋物線開口向上;當a<0時,拋物線開口向下;|a|越大,則拋物線的開口越?。?).一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置;當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;(5).常數(shù)項c決定拋物線與y軸交點;拋物線與y軸交于(0,c);(6).拋物線與x軸交點個數(shù)Δ=b1-4ac>0時,拋物線與x軸有1個交點;Δ=b1-4ac=0時,拋物線與x軸有1個交點;Δ=b1-4ac<0時,拋物線與x軸沒有交點.X的取值是虛數(shù)(x=-b±√b1-4ac乘上虛數(shù)i,整個式子除以1a);當a>0時,函數(shù)在x=-b/1a處取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是減函數(shù),在{x|x>-b/1a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b1/4a}相反不變;當b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax1+c(a≠0).11、C【解析】

根據已知得出△=(﹣k)2﹣4×1×1=0,解關于k的方程即可得.【詳解】∵方程x2﹣kx+1=0有兩個相等的實數(shù)根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故選C.【點睛】本題考查了根的判別式的應用,注意:一元二次方程ax2+bx+c=0(a、b、c為常數(shù),a≠0),當b2﹣4ac>0時,方程有兩個不相等的實數(shù)根;當b2﹣4ac=0時,方程有兩個相等的實數(shù)根;當b2﹣4ac<0時,方程無實數(shù)根.12、C【解析】

連接OD,根據勾股定理求出CD,根據直角三角形的性質求出∠AOD,根據扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10.5【解析】

先證△AEB∽△ABC,再利用相似的性質即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質.利用相似的性質列出含所求邊的比例式是解題的關鍵.14、2【解析】

根據平方根的定義進行計算即可.【詳解】.解:∵i2=﹣1,∴(1+i)?(1﹣i)=1﹣i2=2,∴(1+i)?(1﹣i)的平方根是±,故答案為±.【點睛】本題考查平方根以及實數(shù)的運算,解題關鍵掌握平方根的定義.15、1【解析】

根據七巧板的性質可得BI=IC=CH=HE,因為S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點G到EF的距離為sin45°,根據平行四邊形的面積即可求解.【詳解】由七巧板性質可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,F(xiàn)G=EH=BI=,∴點G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1【點睛】本題考查了七巧板的性質、等腰直角三角形的性質及平行四邊形的面積公式,熟知七巧板的性質是解決問題的關鍵.16、y1<y1【解析】分析:根據反比例函數(shù)的性質和題目中的函數(shù)解析式可以判斷y1與y1的大小,從而可以解答本題.詳解:∵反比例函數(shù)y=-,-4<0,∴在每個象限內,y隨x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函數(shù)y=-圖象上的兩個點,-4<-1,∴y1<y1,故答案為:y1<y1.點睛:本題考查反比例函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確反比例函數(shù)的性質,利用函數(shù)的思想解答.17、x≠1.【解析】

該函數(shù)是分式,分式有意義的條件是分母不等于0,故分母x-1≠0,解得x的范圍.【詳解】根據題意得:x?1≠0,解得:x≠1.故答案為x≠1.【點睛】本題考查了函數(shù)自變量的取值范圍,解題的關鍵是熟練的掌握分式的意義.18、22.5°【解析】

四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質;等腰三角形的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】

(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結論;(2)根據等腰三角形的性質得到∠3=∠COD=∠DEO=60°,根據平行線的性質得到∠4=∠1,根據全等三角形的性質得到∠CBO=∠CDO=90°,于是得到結論;(3)先判斷出△ABO≌△CDE得出AB=CD,即可判斷出四邊形ABCD是平行四邊形,最后判斷出CD=AD即可.【詳解】(1)如圖,連接OD,∵CD是⊙O的切線,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO與△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切線;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【點睛】此題主要考查了切線的性質,同角的余角相等,等腰三角形的性質,平行四邊形的判定和性質,菱形的判定,判斷出△ABO≌△CDE是解本題的關鍵.20、(1)60°;(2)證明略;(3)【解析】

(1)根據∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;

(2)根據AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;

(3)連結OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計算,可得劣弧AC的長.【詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【點睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關鍵.21、(1)答案見解析;(2)B,54°;(3)240人.【解析】

(1)根據D程度的人數(shù)和所占抽查總人數(shù)的百分率即可求出抽查總人數(shù),然后利用總人數(shù)減去A、B、D程度的人數(shù)即可求出C程度的人數(shù),然后分別計算出各程度人數(shù)占抽查總人數(shù)的百分率,從而補全統(tǒng)計圖即可;(2)根據眾數(shù)的定義即可得出結論,然后利用360°乘A程度的人數(shù)所占抽查總人數(shù)的百分率即可得出結論;(3)利用960乘C程度的人數(shù)所占抽查總人數(shù)的百分率即可.【詳解】解:(1)被調查的學生總人數(shù)為人,C程度的人數(shù)為人,則的百分比為、的百分比為、的百分比為,補全圖形如下:(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是、圖②中所在扇形對應的圓心角是.故答案為:;;(3)該年級學生中對數(shù)學學習“不太喜歡”的有人答:該年級學生中對數(shù)學學習“不太喜歡”的有240人.【點睛】此題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖,結合條形統(tǒng)計圖和扇形統(tǒng)計圖得出有用信息是解決此題的關鍵.22、(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)見解析.【解析】

(1)①由題意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由題意得AB=AE=a1,AC=a1,則CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,F(xiàn)H=EF=a2,則CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根據題意畫圖即可.【詳解】解:(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等;理由是:如圖1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四邊形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四邊形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案為①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所畫正方形CHIJ見右圖.23、(1)正方形ABCD的“關聯(lián)點”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關聯(lián)點”中正方形的內切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關聯(lián)點”,所以E在正方形ABCD的內切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標,再根據對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標;②M如圖4中,落在大⊙Q上,求出點Q的橫坐標即可解決問題;【詳解】(1)由題意正方形ABCD的“關聯(lián)點”中正方形的內切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關聯(lián)點”為P2,P3;(2)作正方形ABCD的內切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關聯(lián)點”,∴E在正方形ABCD的內切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關聯(lián)點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點睛】本題考查一次函數(shù)綜合題、正方形的性質、直線與圓的位置關系等知識,解題的關鍵是理解題意,學會尋找特殊位置解決數(shù)學問題,屬于中考壓軸題.24、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據平行四邊形的性質得出四邊形ADCE是平行四邊形,根據垂直推出∠ADC=90°,根據矩形的判定得出即可;(2)①求出DC,根據勾股定理求出AD,根據矩形的面積公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的長.試題解析:(1)證明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵AD是BC邊上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底邊BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四邊形ADCE的面積是AD×DC=12×8=1.②當BC=時,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.點睛:本題考查了平行四邊形的判定,矩形的判定和性質,等腰三角形的性質,勾股定理的應用,能綜合運用定理進行推理和計算是解答此題的關鍵,比較典型,難度適中.25、(1)見解析;(1)1【解析】

(1)根據角平分線的作圖可得;

(1)由等腰三角形的三線合一,結合E為AB邊的中點證EF為△ABD的中位線可得.【詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點,∵E是AB的中點,∴EF為△ABD的中位線,∴EF=BD=1.【點睛】本題主要考查作圖-基本作圖和等腰三角形的性質、中位線定理,熟練掌握等腰三角形的性質、中位線定理是解題的關鍵.26、(1)y=-x2-2x+1,C(1,0)(2)當t=-2時,線段PE的長度有最大值1,此時P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論