版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,ABCD是正方形,△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形2、如圖,在矩形ABCD中,點(diǎn)E在CD邊上,連接AE,將沿AE翻折,使點(diǎn)D落在BC邊的點(diǎn)F處,連接AF,在AF上取點(diǎn)O,以O(shè)為圓心,線段OF的長(zhǎng)為半徑作⊙O,⊙O與AB,AE分別相切于點(diǎn)G,H,連接FG,GH.則下列結(jié)論錯(cuò)誤的是()A. B.四邊形EFGH是菱形C. D.3、往直徑為78cm的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm4、如圖,在Rt△ABC中,,,點(diǎn)D、E分別是AB、AC的中點(diǎn).將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,射線BD與射線CE交于點(diǎn)P,在這個(gè)旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④5、下面是由一些完全相同的小立方塊搭成的幾何體從三個(gè)方向看到的形狀圖.搭成這個(gè)幾何體所用的小立方塊的個(gè)數(shù)是()A.個(gè) B.個(gè) C.個(gè) D.個(gè)6、下列事件是隨機(jī)事件的是()A.拋出的籃球會(huì)下落B.經(jīng)過有交通信號(hào)燈的路口,遇到紅燈C.任意畫一個(gè)三角形,其內(nèi)角和是D.400人中有兩人的生日在同一天7、下列事件中,是必然事件的是()A.剛到車站,恰好有車進(jìn)站B.在一個(gè)僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級(jí)上冊(cè)數(shù)學(xué)教材,恰好是概率初步的內(nèi)容D.任意畫一個(gè)三角形,其外角和是360°8、如圖,AB為的直徑,,,劣弧BC的長(zhǎng)是劣弧BD長(zhǎng)的2倍,則AC的長(zhǎng)為()A. B. C.3 D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、將點(diǎn)繞x軸上的點(diǎn)G順時(shí)針旋轉(zhuǎn)90°后得到點(diǎn),當(dāng)點(diǎn)恰好落在以坐標(biāo)原點(diǎn)O為圓心,2為半徑的圓上時(shí),點(diǎn)G的坐標(biāo)為________.2、在平面直角坐標(biāo)系中,點(diǎn),圓C與x軸相切于點(diǎn)A,過A作一條直線與圓交于A,B兩點(diǎn),AB中點(diǎn)為M,則OM的最大值為______.3、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點(diǎn)O到點(diǎn)A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.4、如圖AB為⊙O的直徑,點(diǎn)P為AB延長(zhǎng)線上的點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過A、B兩點(diǎn)分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號(hào))①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長(zhǎng)為;④若AC=3BD,則有tan∠MAP=.5、如果一個(gè)扇形的弧長(zhǎng)等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個(gè)“完美扇形”的周長(zhǎng)等于6,那么這個(gè)扇形的面積等于_____.6、如果點(diǎn)與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,那么點(diǎn)B的坐標(biāo)是______.7、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點(diǎn)到AB的距離=______.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,已知為的直徑,切于點(diǎn)C,交的延長(zhǎng)線于點(diǎn)D,且.(1)求的大小;(2)若,求的長(zhǎng).2、一個(gè)幾何體的三個(gè)視圖如圖所示(單位:cm).(1)寫出這個(gè)幾何體的名稱:;(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積.3、定理:一條弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點(diǎn)D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點(diǎn)E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長(zhǎng).(2)當(dāng)點(diǎn)E在線段OA上時(shí),若△DOE與△AEC相似,求∠DCA的正切值.(3)當(dāng)OE=1時(shí),求點(diǎn)A與點(diǎn)D之間的距離(直接寫出答案).4、如圖,在直角坐標(biāo)平面內(nèi),已知點(diǎn)A的坐標(biāo)(﹣2,0).(1)圖中點(diǎn)B的坐標(biāo)是______;(2)點(diǎn)B關(guān)于原點(diǎn)對(duì)稱的點(diǎn)C的坐標(biāo)是_____;點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)D的坐標(biāo)是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點(diǎn)F,使,那么點(diǎn)F的所有可能位置是______.5、在平面直角坐標(biāo)系xOy中,給出如下定義:若點(diǎn)P在圖形M上,點(diǎn)Q在圖形N上,稱線段PQ長(zhǎng)度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點(diǎn),規(guī)定d(M,N)=0.已知:如圖,點(diǎn)A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動(dòng)點(diǎn),⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.6、在平面直角坐標(biāo)系xOy中,的半徑為2.點(diǎn)P,Q為外兩點(diǎn),給出如下定義:若上存在點(diǎn)M,N,使得P,Q,M,N為頂點(diǎn)的四邊形為矩形,則稱點(diǎn)P,Q是的“成對(duì)關(guān)聯(lián)點(diǎn)”.(1)如圖,點(diǎn)A,B,C,D橫、縱坐標(biāo)都是整數(shù).在點(diǎn)B,C,D中,與點(diǎn)A組成的“成對(duì)關(guān)聯(lián)點(diǎn)”的點(diǎn)是______;(2)點(diǎn)在第一象限,點(diǎn)F與點(diǎn)E關(guān)于x軸對(duì)稱.若點(diǎn)E,F(xiàn)是的“成對(duì)關(guān)聯(lián)點(diǎn)”,直接寫出t的取值范圍;(3)點(diǎn)G在y軸上.若直線上存在點(diǎn)H,使得點(diǎn)G,H是的“成對(duì)關(guān)聯(lián)點(diǎn)”,直接寫出點(diǎn)G的縱坐標(biāo)的取值范圍.7、如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點(diǎn)F,AC與OD相交于點(diǎn)E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長(zhǎng).-參考答案-一、單選題1、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握?qǐng)D形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.2、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長(zhǎng)定理得到AG=AH,∠GAF=∠HAF,進(jìn)而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對(duì)A作出判斷;接下來(lái)延長(zhǎng)EF與AB交于點(diǎn)N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結(jié)合HE=EF可對(duì)B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結(jié)合AD=DE對(duì)C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點(diǎn)G、H分別是切點(diǎn),∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長(zhǎng)EF與AB交于點(diǎn)N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯(cuò)誤,符合題意.故選C.【點(diǎn)睛】本題是一道幾何綜合題,考查了切線長(zhǎng)定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關(guān)鍵.3、C【分析】連接,過點(diǎn)作于點(diǎn),交于點(diǎn),先由垂徑定理求出的長(zhǎng),再根據(jù)勾股定理求出的長(zhǎng),進(jìn)而得出的長(zhǎng)即可.【詳解】解:連接,過點(diǎn)作于點(diǎn),交于點(diǎn),如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點(diǎn)睛】本題考查了垂徑定理、勾股定理等知識(shí),解題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.4、B【分析】根據(jù),,點(diǎn)D、E分別是AB、AC的中點(diǎn).得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,L可判斷④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確即可.【詳解】解:∵,,點(diǎn)D、E分別是AB、AC的中點(diǎn).∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時(shí),CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時(shí),CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時(shí),BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時(shí)sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點(diǎn)P在以點(diǎn)O為圓心,OA長(zhǎng)為半徑,的圓上運(yùn)動(dòng)軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)為正確;正確的是①②④.故選B.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點(diǎn)定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長(zhǎng)公式,本題難度大,利用輔助線最長(zhǎng)準(zhǔn)確圖形是解題關(guān)鍵.5、D【分析】從俯視圖中可以看出最底層小正方體的個(gè)數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個(gè)數(shù),從而算出總的個(gè)數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個(gè)正方體,第二層有1個(gè)正方體,所以搭成這個(gè)幾何體所用的小立方塊的個(gè)數(shù)是6,故選D.【點(diǎn)睛】考查學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.6、B【分析】根據(jù)事件的確定性和不確定性,以及隨機(jī)事件的含義和特征,逐項(xiàng)判斷即可.【詳解】A.拋出的籃球會(huì)下落是必然事件,故此選項(xiàng)不符合題意;B.經(jīng)過有交通信號(hào)燈的路口,遇到紅燈是隨機(jī)事件,故此選項(xiàng)符合題意;C.任意畫一個(gè)三角形,其內(nèi)角和是是不可能事件,故此選項(xiàng)不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項(xiàng)不符合題意;故選B【點(diǎn)睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關(guān)鍵是要明確:事件分為確定事件和不確定事件(隨機(jī)事件),確定事件又分為必然事件和不可能事件.7、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會(huì)發(fā)生,這樣的事件稱為必然事件”可判斷選項(xiàng)D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會(huì)發(fā)生,這樣的事件稱為不可能事件”可判斷選項(xiàng)B是不可能事件;根據(jù)隨機(jī)事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機(jī)事件”判斷選項(xiàng)A、C是隨機(jī)事件,即可得.【詳解】解:A、剛到車站,恰好有車進(jìn)站是隨機(jī)事件;B、在一個(gè)僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級(jí)上冊(cè)數(shù)學(xué)教材,恰好是概率初步的內(nèi)容是隨機(jī)事件;D、任意畫一個(gè)三角形,其外角和是360°是必然事件;故選D.【點(diǎn)睛】本題考查了必然事件,解題的關(guān)鍵是熟記必然事件的概念,不可能事件的概念和隨機(jī)事件的概念.8、D【分析】連接,根據(jù)求得半徑,進(jìn)而根據(jù)的長(zhǎng),勾股定理的逆定理證明,根據(jù)弧長(zhǎng)關(guān)系可得,即可證明是等邊三角形,求得,進(jìn)而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點(diǎn)睛】本題考查了弧與圓心角的關(guān)系,直徑所對(duì)的圓周角是90度,勾股定理,等邊三角形的判定,求得的長(zhǎng)是解題的關(guān)鍵.二、填空題1、或【分析】設(shè)點(diǎn)G的坐標(biāo)為,過點(diǎn)A作軸交于點(diǎn)M,過點(diǎn)作軸交于點(diǎn)N,由全等三角形求出點(diǎn)坐標(biāo),由點(diǎn)在2為半徑的圓上,根據(jù)勾股定理即可求出點(diǎn)G的坐標(biāo).【詳解】設(shè)點(diǎn)G的坐標(biāo)為,過點(diǎn)A作軸交于點(diǎn)M,過點(diǎn)作軸交于點(diǎn)N,如圖所示:∵,∴,,∵點(diǎn)A繞點(diǎn)G順時(shí)針旋轉(zhuǎn)90°后得到點(diǎn),∴,,∴,∵軸,軸,∴,∴,∴,在與中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案為:,.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理,掌握相關(guān)知識(shí)之間的應(yīng)用是解題的關(guān)鍵.2、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點(diǎn),先求出A點(diǎn)坐標(biāo),從而可證OM是△ABD的中位線,得到,則當(dāng)BD最小時(shí),OM也最小,即當(dāng)B運(yùn)動(dòng)到時(shí),BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點(diǎn)∵點(diǎn)C的坐標(biāo)為(2,2),圓C與x軸相切于點(diǎn)A,∴點(diǎn)A的坐標(biāo)為(2,0),∴OA=OD=2,即O是AD的中點(diǎn),又∵M(jìn)是AB的中點(diǎn),∴OM是△ABD的中位線,∴,∴當(dāng)BD最小時(shí),OM也最小,∴當(dāng)B運(yùn)動(dòng)到時(shí),BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,一點(diǎn)到圓上一點(diǎn)的距離得到最小值,兩點(diǎn)距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.3、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點(diǎn)到點(diǎn)A,B,C的距離相等,如下圖:,,故答案是:5.【點(diǎn)睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.4、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對(duì)等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②;求出,利用弧長(zhǎng)公式求得的長(zhǎng)可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長(zhǎng),可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長(zhǎng)為,故③錯(cuò)誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.5、2【分析】根據(jù)扇形的面積公式S=,代入計(jì)算即可.【詳解】解:∵“完美扇形”的周長(zhǎng)等于6,∴半徑r為=2,弧長(zhǎng)l為2,這個(gè)扇形的面積為:==2.答案為:2.【點(diǎn)睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個(gè)曲邊三角形,把弧長(zhǎng)l看成底,R看成底邊上的高即可.6、【分析】關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)特征為:橫坐標(biāo)、縱坐標(biāo)都互為相反數(shù);進(jìn)而求出點(diǎn)B坐標(biāo).【詳解】解:由題意知點(diǎn)B橫坐標(biāo)為;縱坐標(biāo)為;故答案為:.【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)知識(shí).解題的關(guān)鍵在于熟練記憶關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)中相對(duì)應(yīng)的坐標(biāo)互為相反數(shù).7、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點(diǎn),然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長(zhǎng),利用勾股定理求出直角邊OA的長(zhǎng)即可;再由C為AB的中點(diǎn),由AB的長(zhǎng)求出AC的長(zhǎng),在直角三角形OAC中,由OA及AC的長(zhǎng),利用勾股定理即可求出OC的長(zhǎng),即為O點(diǎn)到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點(diǎn),∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點(diǎn)睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長(zhǎng)的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來(lái)解決問題.三、解答題1、(1)45°(2)【分析】(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥CD,根據(jù)圓周角定理得到∠DOC=2∠CAD,進(jìn)而證明∠D=∠DOC,根據(jù)等腰直角三角形的性質(zhì)求出∠D的度數(shù);(2)根據(jù)等腰三角形的性質(zhì)求出OC,根據(jù)弧長(zhǎng)公式計(jì)算即可.(1)連接.∵,∴,即.∵,∴.∵是⊙的切線,∴,即.∴.∴.∴.(2)∵,,∴.∵,∴.∴的長(zhǎng).【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理、弧長(zhǎng)的計(jì)算,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.2、(1)長(zhǎng)方體或四棱柱(2)66cm2【分析】(1)這個(gè)立方體的三視圖都是長(zhǎng)方形所以這個(gè)幾何體應(yīng)該是長(zhǎng)方體;(2)長(zhǎng)方體一共有6個(gè)面,算長(zhǎng)方體的表面積應(yīng)該把這6個(gè)面的面積相加即可.(1)∵這個(gè)立方體的三視圖都是長(zhǎng)方形,∴這個(gè)立方體是長(zhǎng)方體或四棱柱.(2)由三視圖知該長(zhǎng)方體的表面積:(3)(3×4)×4+(3×3)×2=66(cm2)【點(diǎn)睛】本題考查了由立體圖形的三視圖確定立體圖形的形狀;根據(jù)邊長(zhǎng)求表面積大?。忸}的關(guān)鍵是要有空間想象能力.長(zhǎng)方體有六個(gè)面,算表面積時(shí)不要遺漏.3、(1)8(2)(3)或.【分析】(1)過點(diǎn)O作OH⊥AC于點(diǎn)H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長(zhǎng),即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點(diǎn)O作OH⊥AC于點(diǎn)H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設(shè)OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點(diǎn)O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當(dāng)△DOE與△AEC相似時(shí)可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當(dāng)△DOE與△AEC相似時(shí),不存在∠DOE=∠ACD情況,∴當(dāng)△DOE與△AEC相似時(shí),∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)當(dāng)點(diǎn)E在線段OA上時(shí),如圖3,過點(diǎn)E作EG⊥AC于G,過點(diǎn)O作OH⊥AC于H,延長(zhǎng)AO交⊙O于M,連接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;當(dāng)點(diǎn)E在線段AO的延長(zhǎng)線上時(shí),如圖4,延長(zhǎng)AO交⊙O于M,連接AD,DM,過點(diǎn)E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,綜上所述:AD的長(zhǎng)是或【點(diǎn)睛】本題考查了垂徑定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性質(zhì)與判定,圓周角定理,正切的作出輔助線是解題的關(guān)鍵.4、(1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【分析】(1)根據(jù)坐標(biāo)的定義,判定即可;(2)根據(jù)原點(diǎn)對(duì)稱,y軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)計(jì)算即可;(3)把四邊形的面積分割成三角形的面積計(jì)算;(4)根據(jù)面積相等,確定OF的長(zhǎng),從而確定坐標(biāo).(1)過點(diǎn)B作x軸的垂線,垂足所對(duì)應(yīng)的數(shù)為﹣3,因此點(diǎn)B的橫坐標(biāo)為﹣3,過點(diǎn)B作y軸的垂線,垂足所對(duì)應(yīng)的數(shù)為4,因此點(diǎn)B的縱坐標(biāo)為4,所以點(diǎn)B(﹣3,4);故答案為:(﹣3,4);(2)由于關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn)坐標(biāo)縱橫坐標(biāo)均為互為相反數(shù),所以點(diǎn)B(﹣3,4)關(guān)于原點(diǎn)對(duì)稱點(diǎn)C(3,﹣4),由于關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn),其橫坐標(biāo)互為相反數(shù),其縱坐標(biāo)不變,所以點(diǎn)A(﹣2,0)關(guān)于y軸對(duì)稱點(diǎn)D(2,0),故答案為:(3,﹣4),(2,0);(3)=2××4×4=16,故答案為:16;(4)∵==8=,∴AD?OF=8,∴OF=4,又∵點(diǎn)F在y軸上,∴點(diǎn)F(0,4)或(0,﹣4),故答案為:(0,4)或(0,﹣4).【點(diǎn)睛】本題考查了坐標(biāo)系中對(duì)稱點(diǎn)的坐標(biāo)確定,圖形的面積計(jì)算,正確理解坐標(biāo)的意義,適當(dāng)分割圖形是解題的關(guān)鍵.5、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點(diǎn)O作OD⊥AB于點(diǎn)D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當(dāng)⊙O的半徑等于OD時(shí)最小,當(dāng)⊙O的半徑等于OB時(shí)最大,即可求解;(3)過點(diǎn)C作CN⊥AB于點(diǎn)N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當(dāng)點(diǎn)C在點(diǎn)A的右側(cè)時(shí),當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),當(dāng)點(diǎn)C在點(diǎn)A的左側(cè)時(shí),即可求解.【詳解】解:(1)∵⊙O的半徑為2,A(,0),B(0,).∴,∴點(diǎn)A在⊙O上,點(diǎn)B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)過點(diǎn)O作OD⊥AB于點(diǎn)D,∵點(diǎn)A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,線段AB)=0,∴當(dāng)⊙O的半徑等于OD時(shí)最小,當(dāng)⊙O的半徑等于OB時(shí)最大,∴r的取值范圍是,(3)如圖,過點(diǎn)C作CN⊥AB于點(diǎn)N,∵點(diǎn)A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),當(dāng)點(diǎn)C在點(diǎn)A的右側(cè)時(shí),,∴,∴,∵d(⊙C,線段AB)<1,⊙C的半徑為1,∴,解得:,當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),,此時(shí)d(⊙C,線段AB)=0,當(dāng)點(diǎn)C在點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年現(xiàn)場(chǎng)總線計(jì)算機(jī)通訊模板合作協(xié)議書
- 呵護(hù)卵巢的課件
- 2025年其它核材料及相關(guān)特殊材料項(xiàng)目發(fā)展計(jì)劃
- 2025年玉米新組合項(xiàng)目發(fā)展計(jì)劃
- 2025年電波特性測(cè)試儀器合作協(xié)議書
- 2025年地?zé)嵊媚蜔釢撍姳庙?xiàng)目建議書
- 腹股溝疝氣護(hù)理中的疼痛管理
- 護(hù)理研究統(tǒng)計(jì)方法
- 護(hù)理專業(yè)職業(yè)安全
- 工程材料與熱成型 課件 模塊9、10 對(duì)機(jī)械零件進(jìn)行選材、制定零件毛坯的熱成形
- 污水處理廠設(shè)備更新項(xiàng)目社會(huì)穩(wěn)定風(fēng)險(xiǎn)評(píng)估報(bào)告
- 全國(guó)人大機(jī)關(guān)直屬事業(yè)單位2026年度公開招聘工作人員考試模擬卷附答案解析
- 人社局公益性崗位筆試題目及答案
- 2026全國(guó)人大機(jī)關(guān)直屬事業(yè)單位招聘50人筆試考試備考題庫(kù)及答案解析
- 2026年煙花爆竹經(jīng)營(yíng)單位主要負(fù)責(zé)人證考試題庫(kù)及答案
- 2025秋統(tǒng)編語(yǔ)文八年級(jí)上冊(cè)14.3《使至塞上》課件(核心素養(yǎng))
- 2025年點(diǎn)石聯(lián)考東北“三省一區(qū)”高三年級(jí)12月份聯(lián)合考試英語(yǔ)試題(含答案)
- 礦山隱蔽致災(zāi)因素普查規(guī)范課件
- 2025年《數(shù)據(jù)分析》知識(shí)考試題庫(kù)及答案解析
- 2025年超星爾雅學(xué)習(xí)通《數(shù)據(jù)分析與統(tǒng)計(jì)》考試備考題庫(kù)及答案解析
- 寶安區(qū)老虎坑垃圾焚燒發(fā)電廠三期工程環(huán)境影響評(píng)價(jià)報(bào)告
評(píng)論
0/150
提交評(píng)論