解析卷-貴州省福泉市中考數(shù)學真題分類(勾股定理)匯編定向測試試題(詳解版)_第1頁
解析卷-貴州省福泉市中考數(shù)學真題分類(勾股定理)匯編定向測試試題(詳解版)_第2頁
解析卷-貴州省福泉市中考數(shù)學真題分類(勾股定理)匯編定向測試試題(詳解版)_第3頁
解析卷-貴州省福泉市中考數(shù)學真題分類(勾股定理)匯編定向測試試題(詳解版)_第4頁
解析卷-貴州省福泉市中考數(shù)學真題分類(勾股定理)匯編定向測試試題(詳解版)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

貴州省福泉市中考數(shù)學真題分類(勾股定理)匯編定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、《九章算術》被尊為古代數(shù)學“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個木材,鋸口深等于1寸,鋸道長1尺,則圓形木材的直徑是(

)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸2、我國古代數(shù)學名著《算法統(tǒng)宗》有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭蹴.良工高士素好奇,算出索長有幾?”此問題可理解為:“如圖,有一架秋千,當它靜止時,踏板離地距離的長為尺,將它向前水平推送尺時,即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問繩索有多長?”,設秋千的繩索長為尺,根據(jù)題意可列方程為(

)A. B.C. D.3、如圖,將直角三角形紙片沿AD折疊,使點B落在AC延長線上的點E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.4、如圖,正方體盒子的棱長為2,M為BC的中點,則一只螞蟻從A點沿盒子的表面爬行到M點的最短距離為(

)A. B.C. D.5、若直角三角形的三邊長分別為2,4,x,則x的可能值有(

)A.1個 B.2個 C.3個 D.4個6、下列各組數(shù)據(jù)為三角形的三邊,能構成直角三角形的是(

)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,57、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,一艘輪船位于燈塔P的南偏東方向,距離燈塔50海里的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東方向上的B處,此時B處與燈塔P的距離為___________海里(結果保留根號).2、如圖,滑竿在機械槽內(nèi)運動,∠ACB為直角,已知滑竿AB長2.5米,頂點A在AC上滑動,量得滑竿下端B距C點的距離為1.5米,當端點B向右移動0.5米時,滑竿頂端A下滑________米.3、有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面,這根蘆葦?shù)拈L度為_____尺.4、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為17米,幾分鐘后船到達點D的位置,此時繩子CD的長為10米,問船向岸邊移動了__米.5、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.6、如圖,臺階A處的螞蟻要爬到B處搬運食物,它爬的最短距離是_____.7、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.8、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.三、解答題(7小題,每小題10分,共計70分)1、設直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.2、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為ts.(1)出發(fā)3s后,求PQ的長;(2)當點Q在邊BC上運動時,出發(fā)多久后,△PQB能形成等腰三角形?(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.3、我們知道,到線段兩端距離相等的點在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.(1)如圖1,點P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點P是△APD的準外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準外心P在△ABC的直角邊上,試求AP的長.4、如圖,小明家在一條東西走向的公路北側米的點處,小紅家位于小明家北米(米)、東米(米)點處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點處建一個快遞驛站,使最小,請確定點的位置,并求的最小值.5、某海上有一小島,為了測量小島兩端A,B的距離,測量人員設計了一種測量方法,如圖,已知B是CD的中點,E是BA延長線上的一點,且∠CED=90°,測得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過點C作CF⊥AB交AB的延長線于點F,求值.6、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項目,工作人員告訴小敏,該項目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質平臺的主視圖.小敏經(jīng)過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯誤,請求出立柱AB段的正確長度.7、如圖所示,在中,,,,為邊上的中點.(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.-參考答案-一、單選題1、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點,則O、C、D三點共線,OC⊥AB,∴AC=BC=AB=5(寸),設圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點】本題主要考查了垂徑定理的應用,勾股定理的應用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關鍵.2、C【解析】【分析】根據(jù)勾股定理列方程即可得出結論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點】本題主要考查了勾股定理的應用,讀懂題意是解題的關鍵.3、B【解析】【分析】由勾股定理求出AB,設CD=x,則BD=4-x,根據(jù)求出x得到CD的長,利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點】此題考查了折疊的性質,勾股定理,熟記勾股定理的計算公式是解題的關鍵.4、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時距離最短;∵正方體盒子棱長為2,M為BC的中點,∴,∴,故選:B.【考點】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質、正方體的展開圖、勾股定理、兩點之間線段最短等知識,解題關鍵是牢記相關概念與靈活應用.5、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時要對x的取值進行討論.解答:解:當x為斜邊時,x2=22+42=20,所以x=2;當4為斜邊時,x2=16-4=12,x=2.故選B.點評:本題考查了勾股定理的應用,注意要分兩種情況討論.6、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進行判斷.【詳解】A、42+72≠82,故不能構成直角三角形;B、22+22≠22,故不能構成直角三角形;C、2+2=4,故不能構成三角形,不能構成直角三角形;D、52+122=132,故能構成直角三角形,故選D.【考點】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.7、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項符合題意;B、42+52≠62,不是勾股數(shù),故此選項不合題意;C、22+32≠42,不是勾股數(shù),故此選項不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項不合題意;故選:A.【考點】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).二、填空題1、.【解析】【分析】先作PC⊥AB于點C,然后利用勾股定理進行求解即可.【詳解】解:如圖,作PC⊥AB于點C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案為:.【考點】此題主要考查了勾股定理的應用-方向角問題,求三角形的邊或高的問題一般可以轉化為用勾股定理解決問題,解決的方法就是作高線.2、0.5【解析】【詳解】結合題意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案為0.5.點睛:本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數(shù)學的關鍵.3、13【解析】【分析】找到題中的直角三角形,設水深為x尺,根據(jù)勾股定理解答.【詳解】解:設水深為尺,則蘆葦長為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L度(尺,答:蘆葦長13尺.故答案為:13.【考點】本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數(shù)學的關鍵.4、9.【解析】【分析】在Rt△ABC中,利用勾股定理計算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動了9米,故答案為:9.【考點】本題考查了勾股定理的應用,關鍵是掌握從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.5、8【解析】【分析】作交的延長于點,在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長于點,則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關鍵.6、25【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點之間線段最短進行解答.【詳解】解:如圖所示:臺階平面展開圖為長方形,根據(jù)題意得:,,則螞蟻沿臺階面爬行到B點最短路程是此長方形的對角線長.由勾股定理得:,即,∴,故答案為:25.【考點】本題主要考查了平面展開圖—最短路徑問題,用到臺階的平面展開圖,只要根據(jù)題意判斷出長方形的長和寬即可解答.7、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點】此題主要考查了勾股定理逆定理,關鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.8、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點】本題考查了勾股定理、全等三角形的判定與性質、等腰三角形的性質,證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關鍵.三、解答題1、見解析【解析】【分析】設斜邊為c,根據(jù)勾股定理即可得出c=,再由三角形的面積公式即可得出結論.【詳解】證明:設斜邊為c,根據(jù)勾股定理即可得出c=,∵ab=ch,∴ab=h,即a2b2=a2h2+b2h2,∴=,即.【考點】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.2、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質可得到BP=BQ,可得到關于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關于t的方程,可求得t的值.(1)當t=3時,則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由題意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,當△PQB為等腰三角形時,則有BP=BQ,即16﹣t=2t,解得t=,∴出發(fā)秒后△PQB能形成等腰三角形;(3)①當CQ=BQ時,如圖1所示,則∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②當CQ=BC時,如圖2所示,則BC+CQ=24,∴t=24÷2=12秒.③當BC=BQ時,如圖3所示,過B點作BE⊥AC于點E,則BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.綜上所述:當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【考點】本題考查了勾股定理、等腰三角形的性質、方程思想及分類討論思想等知識.用時間t表示出相應線段的長,化“動”為“靜”是解決這類問題的一般思路,注意方程思想的應用.3、(1)見解析;(2)AP的長為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點P是△APD的準外心;(2)先利用勾股定理計算AC=4,再進行討論:當P點在AB上,PA=PB,當P點在AC上,PA=PC,易得對應AP的值;當P點在AC上,PB=PC,設AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時AP的長.【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點P是△APD的準外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當P點在AB上,PA=PB,則APAB;當P點在AC上,PA=PC,則APAC=2,當P點在AC上,PB=PC,如圖2,設AP=t,則PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此時AP,綜上所述,AP的長為或2或.【考點】本題考查了全等三角形的判定與性質,勾股定理及新定義的運用能力.理解題中給的定義是解題的關鍵.4、(1)米;(2)見解析,米【解析】【分析】(1)如圖,連接AB,根據(jù)勾股定理即可得到結論;(2)如圖,作點A關于直線MN的對稱點A',連接A'B交MN于點P.驛站到小明家和到小紅家距離和的最小值即為A'B,根據(jù)勾股定理即可得到結論.【詳解】解:(1)如圖,連接AB,由題意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如圖,作點A關于直線MN的對稱點A',連接A'B交MN于點P.驛站到小明家和到小紅家距離和的最小值即為A'B,由題意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即從驛站到小明家和到小紅家距離和的最小值為1500米.【考點】本題考查軸對稱-最短問題,勾股定理,題的關鍵是學會利用軸對稱解決最短問題.5、(1)33.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論