考點解析四川綿陽南山中學雙語學校7年級數(shù)學下冊第四章三角形必考點解析試題(含答案解析)_第1頁
考點解析四川綿陽南山中學雙語學校7年級數(shù)學下冊第四章三角形必考點解析試題(含答案解析)_第2頁
考點解析四川綿陽南山中學雙語學校7年級數(shù)學下冊第四章三角形必考點解析試題(含答案解析)_第3頁
考點解析四川綿陽南山中學雙語學校7年級數(shù)學下冊第四章三角形必考點解析試題(含答案解析)_第4頁
考點解析四川綿陽南山中學雙語學校7年級數(shù)學下冊第四章三角形必考點解析試題(含答案解析)_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川綿陽南山中學雙語學校7年級數(shù)學下冊第四章三角形必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列敘述正確的是()A.三角形的外角大于它的內(nèi)角 B.三角形的外角都比銳角大C.三角形的內(nèi)角沒有小于60°的 D.三角形中可以有三個內(nèi)角都是銳角2、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E3、根據(jù)下列已知條件,能畫出唯一的的是()A., B.,,C.,, D.,,4、如果一個三角形的兩邊長分別為5cm和8cm,則第三邊長可能是()A.2cm B.3cm C.12cm D.13cm5、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據(jù)是()A.SSS B.SAS C.ASA D.HL6、滿足下列條件的兩個三角形不一定全等的是()A.周長相等的兩個三角形 B.有一腰和底邊對應(yīng)相等的兩個等腰三角形C.三邊都對應(yīng)相等的兩個三角形 D.兩條直角邊對應(yīng)相等的兩個直角三角形7、如圖,工人師傅在安裝木制門框時,為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學依據(jù)是()A.兩點確定一條直線B.兩點之間,線段最短C.三角形具有穩(wěn)定性D.三角形的任意兩邊之和大于第三邊8、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°9、如圖,在和中,,,,,連接,交于點,連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個10、如圖,點,在線段上,與全等,其中點與點,點與點是對應(yīng)頂點,與交于點,則等于()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.若AD=3cm,BE=1cm,則DE=_________.2、一個零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個零件是否合格,只要檢驗∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個零件______(填“合格”不合格”).3、如圖,AB=CD,若要判定△ABD≌△CDB,則需要添加的一個條件是____________.4、已知a,b,c是△ABC的三邊,化簡:|a+b-c|+|b-a-c|=________.5、如圖,某同學把一塊三角形的玻璃打碎成了三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃,那么最省事的辦法是帶____(填序號)去配,這樣做的科學依據(jù)是_______.6、如圖,兩根旗桿CA,DB相距20米,且CA⊥AB,DB⊥AB,某人從旗桿DB的底部B點沿BA走向旗桿CA底部A點.一段時間后到達點M,此時他分別仰望旗桿的頂點C和D,兩次視線的夾角∠CMD=90°,且CM=DM.已知旗桿BD的高為12米,該人的運動速度為每秒2米,則這個人從點B到點M所用時間是_____秒.7、如圖,在中,平分,于點E,若的面積為,則陰影部分的面積為________.8、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)9、如圖,AB,CD相交于點O,,請你補充一個條件,使得,你補充的條件是______.10、已知三角形的三邊分別為n,5,7,則n的范圍是_____.三、解答題(6小題,每小題10分,共計60分)1、如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點為射線CB上一動點,連結(jié)AE,作AF⊥AE且AF=AE.(1)如圖1,過F點作FD⊥AC交AC于D點,求證:FD=BC;(2)如圖2,連結(jié)BF交AC于G點,若AG=3,CG=1,求證:E點為BC中點.(3)當E點在射線CB上,連結(jié)BF與直線AC交子G點,若BC=4,BE=3,則.(直接寫出結(jié)果)2、如圖,點B、F、C、E在同一條直線上,AB=DE,AC=DF,BF=EC.求證:∠A=∠D.3、如圖,△ABC中,D是邊BC的中點,過點C作CE∥AB,交AD的延長線于點E.求證:AB=CE.4、已知是的三邊長.(1)若滿足,,試判斷的形狀;(2)化簡:5、如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點F,且AD=CD.(1)求證:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的長.6、如圖,直角坐標系中,點B(a,0),點C(0,b),點A在第一象限.若a,b滿足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點,連接AF,OA,當點A在第一象限內(nèi)運動(AD不過點C)時,證明:∠OAF的大小不變;(3)如圖2,B′與B關(guān)于y軸對稱,M在線段BC上,N在CB′的延長線上,且BM=NB′,連接MN交x軸于點T,過T作TQ⊥MN交y軸于點Q,當t=2時,求點Q的坐標.-參考答案-一、單選題1、D【分析】結(jié)合直角三角形,鈍角三角形,銳角三角形的內(nèi)角與外角的含義與大小逐一分析即可.【詳解】解:三角形的外角不一定大于它的內(nèi)角,銳角三角形的任何一個外角都大于內(nèi)角,故A不符合題意;三角形的外角可以是銳角,不一定比銳角大,故B不符合題意;三角形的內(nèi)角可以小于60°,一個三角形的三個角可以為:故C不符合題意;三角形中可以有三個內(nèi)角都是銳角,這是個銳角三角形,故D符合題意;故選D【點睛】本題考查的是三角形的的內(nèi)角與外角的含義與大小,掌握“直角三角形,鈍角三角形,銳角三角形的內(nèi)角與外角”是解本題的關(guān)鍵.2、C【分析】根據(jù)全等三角形的判定定理進行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.3、C【分析】利用全等三角形的判定方法以及三角形三邊關(guān)系分別判斷得出即可.【詳解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能畫出唯一三角形,故本選項不符合題意;B.,,,不符合全等三角形的判定定理,不能畫出唯一的三角形,故本選項不符合題意;C.,,,符合全等三角形的判定定理ASA,能畫出唯一的三角形,故本選項符合題意;D.3+4<8,不符合三角形的三邊關(guān)系定理,不能畫出三角形,故本選項不符合題意;故選:C.【點睛】此題主要考查了全等三角形的判定以及三角形三邊關(guān)系,正確把握全等三角形的判定方法是解題關(guān)鍵.4、C【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊可求得結(jié)果【詳解】解:設(shè)第三邊長為c,由題可知,即,所以第三邊可能的結(jié)果為12cm故選C【點睛】本題主要考查了三角形的性質(zhì)中三角形的三邊關(guān)系知識點5、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關(guān)鍵.6、A【分析】根據(jù)全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS對各選項進行一一判斷即可.【詳解】解:A、周長相等的兩個三角形不一定全等,符合題意;B、有一腰和底邊對應(yīng)相等的兩個等腰三角形根據(jù)三邊對應(yīng)相等判定定理可判定全等,不符合題意;C、三邊都對應(yīng)相等的兩個三角形根據(jù)三邊對應(yīng)相等判定定理可判定全等,不符合題意;D、兩條直角邊對應(yīng)相等的兩個直角三角形根據(jù)SAS判定定理可判定全等,不符合題意.故選:A.【點睛】此題考查了全等三角形的判定方法,解題的關(guān)鍵是熟練掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).7、C【分析】根據(jù)三角形具有穩(wěn)定性進行求解即可.【詳解】解:工人師傅在安裝木制門框時,為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學依據(jù)是三角形具有穩(wěn)定性,故選C.【點睛】本題主要考查了三角形的穩(wěn)定性,熟知三角形具有穩(wěn)定性是解題的關(guān)鍵.8、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.9、C【分析】由全等三角形的判定及性質(zhì)對每個結(jié)論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質(zhì)有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設(shè)平分則∵∴即由④知又∵為對頂角∴∴∴∴在和中,∴即AB=AC又∵故假設(shè)不符,故不平分故③錯誤.綜上所述①②④正確,共有3個正確.故選:C.【點睛】本題考查了全等三角形的判定及性質(zhì),靈活的選擇全等三角形的判定的方法是解題的關(guān)鍵,從判定兩個三角形全等的方法可知,要判定兩個三角形全等,需要知道這兩個三角形分別有三個元素(其中至少一個元素是邊)對應(yīng)相等,這樣就可以利用題目中的已知邊角迅速、準確地確定要補充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個三角形全等的思路.10、D【分析】根據(jù)點與點,點與點是對應(yīng)頂點,得到,根據(jù)全等三角形的性質(zhì)解答.【詳解】解:與全等,點與點,點與點是對應(yīng)頂點,,.故選:D【點睛】本題主要考查了全等三角形的性質(zhì),熟練掌握全等三角形的對應(yīng)邊相等,對應(yīng)角相等是解題的關(guān)鍵.二、填空題1、2cm【分析】易證∠CAD=∠BCE,即可證明BEC≌△DAC,可得CD=BE,CE=AD,根據(jù)DE=CE-CD,即可解題.【詳解】解:∵∠ACB=90°,∴∠BCE+∠DCA=90°.∵AD⊥CE,∴∠DAC+∠DCA=90°.∴∠BCE=∠DAC,在△BEC和△DAC中,∵∠BCE=∠DAC,∠BEC=∠CDA=90°.BC=AC,∴△BEC≌△DAC(AAS),∴CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2cm.故答案是:2cm.【點睛】此題是三角形綜合題,主要考查了全等三角形的判定,全等三角形對應(yīng)邊相等的性質(zhì),本題中求證△CDA≌△BEC是解題的關(guān)鍵.2、不合格【分析】連接AC并延長,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進行判定.【詳解】解:如圖,連接AC并延長,由三角形的外角性質(zhì)可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個零件不合格.故答案為:不合格.【點睛】本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出兩個三角形是解題的關(guān)鍵.3、∠1=∠2(或填AD=CB)【分析】根據(jù)題意知,在△ABD與△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【詳解】解:∵在△ABD與△CDB中,AB=CD,BD=DB,∴添加∠1=∠2時,可以根據(jù)SAS判定△ABD≌△CDB,添加AD=CB時,可以根據(jù)SSS判定△ABD≌△CDB,,故答案為∠1=∠2(或填AD=CB).【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.4、【分析】首先利用三角形的三邊關(guān)系得出,然后根據(jù)求絕對值的法則進行化簡即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點睛】熟悉三角形的三邊關(guān)系和求絕對值的法則,是解題的關(guān)鍵,注意,去絕對值后,要先添加括號,再去括號,這樣不容易出錯.|a+b-c|+|b-a-c|5、③ASA【分析】由題意已知三角形破損部分的邊角,得到原來三角形的邊角,根據(jù)三角形全等的判定方法進行分析即可.【詳解】解:第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.故答案為:③;ASA.【點睛】本題主要考查全等三角形的判定方法的實際應(yīng)用,要求學生將所學的知識運用于實際生活中,要認真觀察圖形,根據(jù)已知選擇方法.6、4【分析】先說明,再利用證明,然后根據(jù)全等三角形的性質(zhì)可得米,再根據(jù)線段的和差求得BM的長,最后利用時間=路程÷速度計算即可.【詳解】解:∵,∴,又∵,∴,∴,在和中,,∴,∴米,(米),∵該人的運動速度,他到達點M時,運動時間為s.故答案為:4.【點睛】本題主要考查了全等三角形的判定與性質(zhì),根據(jù)題意證得是解答本題的關(guān)鍵.7、6【分析】證點E為AD的中點,可得△ACE與△ACD的面積之比,同理可得△ABE和△ABD的面積之比,即可解答出.【詳解】解:如圖,平分,于點E,∴,,∵,∴≌∴,∴S△ACE:S△ACD=1:2,同理可得,S△ABE:S△ABD=1:2,∵S△ABC=12,∴陰影部分的面積為S△ACE+S△ABE=S△ABC=×12=6.故答案為6.【點睛】本題主要考查了全等三角形的判定與性質(zhì)及三角形面積的等積變換,解題關(guān)鍵是明確三角形的中線將三角形分成面積相等的兩部分.8、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應(yīng)角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運用是解題關(guān)鍵.9、(答案不唯一)【分析】在與中,已經(jīng)有條件:所以補充可以利用證明兩個三角形全等.【詳解】解:在與中,所以補充:故答案為:【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明兩個三角形全等”是解本題的關(guān)鍵.10、2<n<12【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求第三邊長的范圍.【詳解】解:由三角形三邊關(guān)系定理得:7﹣5<n<7+5,即2<n<12故n的范圍是2<n<12.故答案為:2<n<12.【點睛】本題考查的是三角形三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.三、解答題1、(1)證明見解析;(2)證明見解析;(3)或【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;(3)過F作FD⊥AG的延長線交于點D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計算即可.【詳解】(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點為BC中點;(3)當點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴AG=CG+AC=5.5,∴,同理,當點E在線段BC上時,AG=AC-CG+=2.5,∴,故答案為:或.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.2、見解析【分析】先證明BC=EF,讓利用SSS證明△ABC≌△DEF即可得到∠A=∠D.【詳解】證明:∵BF=EC,∴BF+FC=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.3、見解析【分析】證△ADB≌△EDC(ASA),即可得出結(jié)論.【詳解】證明:∵D是邊BC的中點,∴BD=CD.∵CE∥AB,∴∠B=∠ECD.在△ADB和△EDC中∴△ADB≌△EDC(ASA)∴AB=CE.【點睛】本題考查了全等三角形的判定與性質(zhì)、平行線的性質(zhì)等知識;熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.4、(1)是等邊三角形;(2)【分析】(1)由性質(zhì)可得a=b,b=c,故為等邊三角形.(2)根據(jù)三角形任意兩邊和大于第三邊,任意兩邊差小于第三邊判定正負,再由絕對值性質(zhì)去絕對值計算即可.【詳解】(1)∵∴且∴∴是等邊三角形.(2)∵是的三邊長∴b-c-a<0,a-b+c>0,a-b-c<0原式===【點睛】本題考查了三角形三條邊的關(guān)系以及絕對值化簡,根據(jù)三角形任意兩邊和大于第三邊,任意兩邊差小于第三邊判定絕對值內(nèi)數(shù)值正負是解題的關(guān)鍵.5、(1)證明見解析;(2)AF=3【分析】(1)利用同角的余角相等,證明∠BAD=∠FCD,利用A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論