版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
八年級(jí)上冊(cè)壓軸題數(shù)學(xué)數(shù)學(xué)模擬試題一、壓軸題1.如圖1,直角三角形DEF與直角三角形ABC的斜邊在同一直線上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,將△DEF繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn),記∠ADF為α(0°<α<180°),在旋轉(zhuǎn)過(guò)程中;(1)如圖2,當(dāng)∠α=時(shí),,當(dāng)∠α=時(shí),DE⊥BC;(2)如圖3,當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),邊DF、DE分別交BC、AC的延長(zhǎng)線于點(diǎn)M、N,①此時(shí)∠α的度數(shù)范圍是;②∠1與∠2度數(shù)的和是否變化?若不變求出∠1與∠2度數(shù)和;若變化,請(qǐng)說(shuō)明理由;③若使得∠2≥2∠1,求∠α的度數(shù)范圍.解析:(1)10°,100°;(2)①55°<α<85°;②∠1與∠2度數(shù)的和不變,理由見(jiàn)解析③55°<α≤60°.【解析】【分析】(1)當(dāng)∠EDA=∠B=40°時(shí),,得出30°+α=40°,即可得出結(jié)果;當(dāng)時(shí),DE⊥AB,得出50°+α+30°=180°,即可得出結(jié)果;(2)①由已知得出∠ACD=45°,∠A=50°,推出∠CDA=85°,當(dāng)點(diǎn)C在DE邊上時(shí),α+30°=85°,解得α=55°,當(dāng)點(diǎn)C在DF邊上時(shí),α=85°,即可得出結(jié)果;②連接MN,由三角形內(nèi)角和定理得出∠CNM+∠CMN+∠MCN=180°,則∠CNM+∠CMN=90°,由三角形內(nèi)角和定理得出∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠CMN+∠1+∠MDN=180°,即可得出結(jié)論;③由,∠1+∠2=60°,得出∠2≥2(60°?∠2),解得∠2≥40°,由三角形內(nèi)角和定理得出∠2+∠NDM+α+∠A=180°,即∠2+30°+α+50°=180°,則∠2=100°?α,得出100°?α≥40°,解得α≤60°,再由當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),55°<α<85°,即可得出結(jié)果.【詳解】解:(1)∵∠B=40°,∴當(dāng)∠EDA=∠B=40°時(shí),,而∠EDF=30°,∴,解得:α=10°;當(dāng)時(shí),DE⊥AB,此時(shí)∠A+∠EDA=180°,,∴,解得:α=100°;故答案為10°,100°;(2)①∵∠ABC=40°,CD平分∠ACB,∴∠ACD=45°,∠A=50°,∴∠CDA=85°,當(dāng)點(diǎn)C在DE邊上時(shí),,解得:,當(dāng)點(diǎn)C在DF邊上時(shí),,∴當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),;故答案為:;②∠1與∠2度數(shù)的和不變;理由如下:連接MN,如圖所示:在△CMN中,∵∠CNM+∠CMN+∠MCN=180°,∴∠CNM+∠CMN=90°,在△MND中,∵∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠CMN+∠1+∠MDN=180°,∴;③∵∠2≥2∠1,∠1+∠2=60°,∴,∴∠2≥40°,∵,即,∴,∴,解得:α≤60°,∵當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),,∴∠α的度數(shù)范圍為.【點(diǎn)睛】本題考查了平行線的性質(zhì)、直角三角形的性質(zhì)、三角形內(nèi)角和定理、不等式等知識(shí),合理選擇三角形后利用三角形內(nèi)角和定理列等量關(guān)系是解決問(wèn)題的關(guān)鍵.2.閱讀材料并完成習(xí)題:在數(shù)學(xué)中,我們會(huì)用“截長(zhǎng)補(bǔ)短”的方法來(lái)構(gòu)造全等三角形解決問(wèn)題.請(qǐng)看這個(gè)例題:如圖1,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四邊形ABCD的面積.解:延長(zhǎng)線段CB到E,使得BE=CD,連接AE,我們可以證明△BAE≌△DAC,根據(jù)全等三角形的性質(zhì)得AE=AC=2,∠EAB=∠CAD,則∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四邊形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,這樣,四邊形ABCD的面積就轉(zhuǎn)化為等腰直角三角形EAC面積.(1)根據(jù)上面的思路,我們可以求得四邊形ABCD的面積為cm2.(2)請(qǐng)你用上面學(xué)到的方法完成下面的習(xí)題.如圖2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五邊形FGHMN的面積.解析:(1)2;(2)4【解析】【分析】(1)根據(jù)題意可直接求等腰直角三角形EAC的面積即可;(2)延長(zhǎng)MN到K,使NK=GH,連接FK、FH、FM,由(1)易證,則有FK=FH,因?yàn)镠M=GH+MN易證,故可求解.【詳解】(1)由題意知,故答案為2;(2)延長(zhǎng)MN到K,使NK=GH,連接FK、FH、FM,如圖所示:FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∠FNK=∠FGH=90°,,F(xiàn)H=FK,又FM=FM,HM=KM=MN+GH=MN+NK,,MK=FN=2cm,.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,關(guān)鍵是根據(jù)截長(zhǎng)補(bǔ)短法及割補(bǔ)法求面積的運(yùn)用.3.(1)發(fā)現(xiàn):如圖1,的內(nèi)角的平分線和外角的平分線相交于點(diǎn)。①當(dāng)時(shí),則②當(dāng)時(shí),求的度數(shù)(用含的代數(shù)式表示)﹔(2)應(yīng)用:如圖2,直線與直線垂直相交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),延長(zhǎng)至,已知的角平分線與的角平分線所在的直線相交于,在中,如果一個(gè)角是另一個(gè)角的倍,請(qǐng)直接寫(xiě)出的度數(shù).解析:(1)①25°;②;(2).【解析】【分析】(1)①利用外角和性質(zhì)∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,再利用角平分線的定義進(jìn)行等量代換即可;②與①同理可得;(2)根據(jù)題意分情況進(jìn)行討論,用到(1)的結(jié)論計(jì)算即可【詳解】(1)①∠ACD=∠ABC+∠A,∠OCD=∠BOC+∠OBC,∵OB、OC分別平分∠ABC、∠ACD,∴∠ACD=2∠OCD,∠ABC=2∠OBC,∴2∠OCD=2∠OBC+∠A,∴∠A=2∠BOC,∵∠A=50°,∴∠BOC=∠A=25°,故填:25°;②,且平分平分(2)的角平分線與的角平分線所在的直線相交于,符合題意的情況有兩種:①根據(jù)(1)可知:②根據(jù)(1)可知:【點(diǎn)睛】本題考查三角形外角和的性質(zhì)、角平分線的定義,利用分類(lèi)討論的數(shù)學(xué)思想是關(guān)鍵.4.已知:MN∥PQ,點(diǎn)A,B分別在MN,PQ上,點(diǎn)C為MN,PQ之間的一點(diǎn),連接CA,CB.(1)如圖1,求證:∠C=∠MAC+∠PBC;(2)如圖2,AD,BD,AE,BE分別為∠MAC,∠PBC,∠CAN,∠CBQ的角平分線,求證:∠D+∠E=180°;(3)在(2)的條件下,如圖3,過(guò)點(diǎn)D作DA的垂線交PQ于點(diǎn)G,點(diǎn)F在PQ上,∠FDA=2∠FDB,F(xiàn)D的延長(zhǎng)線交EA的延長(zhǎng)線于點(diǎn)H,若3∠C=4∠E,猜想∠H與∠GDB的倍數(shù)關(guān)系并證明.解析:(1)見(jiàn)解析;(2)見(jiàn)解析;(3)猜想:∠H=3∠GDB,證明見(jiàn)解析.【解析】【分析】(1)作輔助線:過(guò)C作EF∥MN,根據(jù)平行的傳遞性可知這三條直線兩兩平行,由平行線的性質(zhì)得到內(nèi)錯(cuò)角相等∠MAC=∠ACF,∠BCF=∠PBC,再進(jìn)行角的加和即可得出結(jié)論;(2)根據(jù)角平分線線定理得知,利用平角為180°得到∠DAE=90°,同理得,再根據(jù)四邊形內(nèi)角和180°,得出結(jié)論;(3)由(1)(2)中的結(jié)論進(jìn)行等量代換得到3∠ADB=2∠E,并且兩角的和為180°,由此得到兩個(gè)角的度數(shù)分別為72°和108°,利用角的和與差得到∠HDA=36°,∠H=54°,由此得到倍數(shù)關(guān)系.【詳解】(1)如圖:過(guò)C作EF∥MN,∵M(jìn)N∥PQ,∴MN∥EF∥PQ,∴∠MAC=∠ACF,∠BCF=∠PBC,∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC.(2)∵AD,AE分別為∠MAC,∠CAN的角平分線,∴,∴,于是∠DAE=90°同理可得:,由(1)可得:∵.(3)猜想:∠H=3∠GDB.理由如下:由(1)可知:,∵3∠C=4∠E,∴6∠ADB=4∠E,∴3∠ADB=2∠E,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG⊥DA,∴∠GDB=18°,∵∠FDA=2∠FDB,∴∠ADF=144°,∴∠HDA=36°,∵DA⊥AE,∴∠H=54°,∴∠H=3∠GDB.【點(diǎn)睛】考查平行線中角度的關(guān)系,學(xué)生要熟悉掌握平行線的性質(zhì)以及角平分線定理,結(jié)合角的和與差進(jìn)行計(jì)算,本題的關(guān)鍵是平行線的性質(zhì).5.?dāng)?shù)學(xué)活動(dòng)課上,老師出了這樣一個(gè)題目:“已知:于,點(diǎn)、分別在和上,作線段和(如圖1),使.求證:”.(1)聰聰同學(xué)給出一種證明問(wèn)題的輔助線:如圖2,過(guò)作,交于.請(qǐng)你根據(jù)聰聰同學(xué)提供的輔助線(或自己添加其它輔助線),給出問(wèn)題的證明.(2)若點(diǎn)在直線下方,且知,直接寫(xiě)出和之間的數(shù)量關(guān)系.解析:(1)見(jiàn)解析;(2)【解析】【分析】(1)根據(jù)聰聰提供的輔助線作法進(jìn)行證明,先由平行線的性質(zhì)得:,,再證明,可得結(jié)論;(2)根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)可得結(jié)論.【詳解】解:(1)證明:如圖2,過(guò)作,交于,,,,,,,,;(2)解:,理由如下:如圖3,,,,,,∴.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和判定以及三角形外角性質(zhì)的運(yùn)用,熟練掌握平行線的性質(zhì)和判定是解決問(wèn)題的關(guān)鍵.6.在我們認(rèn)識(shí)的多邊形中,有很多軸對(duì)稱(chēng)圖形.有些多邊形,邊數(shù)不同對(duì)稱(chēng)軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對(duì)稱(chēng)軸.回答下列問(wèn)題:(1)非等邊的等腰三角形有________條對(duì)稱(chēng)軸,非正方形的長(zhǎng)方形有________條對(duì)稱(chēng)軸,等邊三角形有___________條對(duì)稱(chēng)軸;(2)觀察下列一組凸多邊形(實(shí)線畫(huà)出),它們的共同點(diǎn)是只有1條對(duì)稱(chēng)軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類(lèi)似的修改方式,請(qǐng)你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱(chēng)軸的凸五邊形,并用實(shí)線畫(huà)出所得的凸五邊形;(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱(chēng)軸的凸六邊形,于是他選擇修改長(zhǎng)方形,圖2中是他沒(méi)有完成的圖形,請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形;(4)請(qǐng)你畫(huà)一個(gè)恰好有3條對(duì)稱(chēng)軸的凸六邊形,并用虛線標(biāo)出對(duì)稱(chēng)軸.解析:(1)1,2,3;(2)答案見(jiàn)解析;(3)答案見(jiàn)解析;(4)答案見(jiàn)解析.【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)、矩形的性質(zhì)以及等邊三角形的性質(zhì)進(jìn)行判斷即可;(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類(lèi)似的修改方式進(jìn)行畫(huà)圖即可;(3)長(zhǎng)方形具有兩條對(duì)稱(chēng)軸,在長(zhǎng)方形的右側(cè)補(bǔ)出與左側(cè)一樣的圖形,即可構(gòu)造出一個(gè)恰好有2條對(duì)稱(chēng)軸的凸六邊形;(4)在等邊三角形的基礎(chǔ)上加以修改,即可得到恰好有3條對(duì)稱(chēng)軸的凸六邊形.【詳解】解:(1)非等邊的等腰三角形有1條對(duì)稱(chēng)軸,非正方形的長(zhǎng)方形有2條對(duì)稱(chēng)軸,等邊三角形有3條對(duì)稱(chēng)軸,故答案為1,2,3;(2)恰好有1條對(duì)稱(chēng)軸的凸五邊形如圖中所示.(3)恰好有2條對(duì)稱(chēng)軸的凸六邊形如圖所示.(4)恰好有3條對(duì)稱(chēng)軸的凸六邊形如圖所示.7.探索發(fā)現(xiàn):……根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問(wèn)題:(1)=,=;(2)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:(3)利用規(guī)律解方程:解析:(1);(2);(3)見(jiàn)解析.【解析】【分析】(1)根據(jù)簡(jiǎn)單的分式可得,相鄰兩個(gè)數(shù)的積的倒數(shù)等于它們的倒數(shù)之差,即可得到和(2)根據(jù)(1)規(guī)律將乘法寫(xiě)成減法的形式,可以觀察出前一項(xiàng)的減數(shù)等于后一項(xiàng)的被減數(shù),因此可得它們的和.(3)首先利用(2)的和的結(jié)果將左邊化簡(jiǎn),再利用分式方程的解法求解即可.【詳解】解:(1),;故答案為(2)原式=;(3)已知等式整理得:所以,原方程即:,方程的兩邊同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,檢驗(yàn):把x=3代入x(x+5)=24≠0,∴原方程的解為:x=3.【點(diǎn)睛】本題主要考查學(xué)生的歸納總結(jié)能力,關(guān)鍵在于根據(jù)簡(jiǎn)單的數(shù)的運(yùn)算尋找規(guī)律,是考試的熱點(diǎn).8.(概念認(rèn)識(shí))如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問(wèn)題解決)(1)如圖②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分線BD交AC于點(diǎn)D,則∠BDC=°;(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰AB三分線和∠ACB鄰AC三分線,且BP⊥CP,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點(diǎn)P.若∠A=m°,∠B=n°,直接寫(xiě)出∠BPC的度數(shù).(用含m、n的代數(shù)式表示)解析:(1)85或100;(2)45°;(3)m或m或m+n或m-n或n-m【解析】【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫(huà)圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進(jìn)而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點(diǎn).分四種情況畫(huà)圖:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),再根據(jù),,即可求出的度數(shù).【詳解】解:(1)如圖,當(dāng)是“鄰三分線”時(shí),;當(dāng)是“鄰三分線”時(shí),;故答案為:85或100;(2),,,又、分別是鄰三分線和鄰三分線,,,,,在中,.(3)分4種情況進(jìn)行畫(huà)圖計(jì)算:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),①當(dāng)時(shí),;②當(dāng)時(shí),.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握三角形的外角性質(zhì).注意要分情況討論.9.在等邊△ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時(shí)出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點(diǎn)時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過(guò)t分鐘后,它們分別爬行到D、E處,請(qǐng)問(wèn):(1)如圖1,在爬行過(guò)程中,CD和BE始終相等嗎,請(qǐng)證明?(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長(zhǎng)線爬行”,EB與CD交于點(diǎn)Q,其他條件不變,蝸牛爬行過(guò)程中∠CQE的大小保持不變,請(qǐng)利用圖2說(shuō)明:∠CQE=60°;(3)如果將原題中“由C向A爬行”改為“沿著B(niǎo)C的延長(zhǎng)線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過(guò)程中,證明:DF=EF解析:(1)相等,證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.【解析】【分析】(1)先證明△ACD≌△CBE,再由全等三角形的性質(zhì)即可證得CD=BE;(2)先證明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如圖3,過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G,根據(jù)等邊三角形的三邊相等,可以證得AD=DG=CE;進(jìn)而證明△DGF和△ECF全等,最后根據(jù)全等三角形的性質(zhì)即可證明.【詳解】(1)解:CD和BE始終相等,理由如下:如圖1,AB=BC=CA,兩只蝸牛速度相同,且同時(shí)出發(fā),∴CE=AD,∠A=∠BCE=60°在△ACD與△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始終相等;(2)證明:根據(jù)題意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等邊三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行過(guò)程中,DF始終等于EF是正確的,理由如下:如圖,過(guò)點(diǎn)D作DG∥BC交AC于點(diǎn)G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG為等邊三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì)和等邊三角形的性質(zhì);題弄懂題中所給的信息,再根據(jù)所提供的思路尋找證明條件是解答本題的關(guān)鍵.10.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點(diǎn)D.①當(dāng)α=70°時(shí),∠BDC度數(shù)=度(直接寫(xiě)出結(jié)果);②∠BDC的度數(shù)為(用含α的代數(shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE角平分線交于點(diǎn)F,求∠BFC的度數(shù)(用含α的代數(shù)式表示).(3)在(2)的條件下,將△FBC以直線BC為對(duì)稱(chēng)軸翻折得到△GBC,∠GBC的角平分線與∠GCB的角平分線交于點(diǎn)M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).解析:(1)(1)①125°;②,(2);(3)【解析】【分析】(1)①由三角形內(nèi)角和定理易得∠ABC+∠ACB=110°,然后根據(jù)角平分線的定義,結(jié)合三角形內(nèi)角和定理可求∠BDC;②由三角形內(nèi)角和定理易得∠ABC+∠ACB=180°-∠A,采用①的推導(dǎo)方法即可求解;(2)由三角形外角性質(zhì)得,然后結(jié)合角平分線的定義求解;(3)由折疊的對(duì)稱(chēng)性得,結(jié)合(1)②的結(jié)論可得答案.【詳解】解:(1)①∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣70°)=125°②∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α.故答案分別為125°,90°+α.(2)∵BF和CF分別平分∠ABC和∠ACE∴,,∴=即.(3)由軸對(duì)稱(chēng)性質(zhì)知:,由(1)②可得,∴.【點(diǎn)睛】本題考查三角形中與角平分線有關(guān)的角度計(jì)算,熟練掌握三角形內(nèi)角和定理,以及三角形的外角性質(zhì)是解題的關(guān)鍵.11.在等腰中,,為邊上的高,點(diǎn)在的外部且,,連接交直線于點(diǎn),連接.(1)如圖①,當(dāng)時(shí),求證:;(2)如圖②,當(dāng)時(shí),求的度數(shù);(3)如圖③,當(dāng)時(shí),求證:.解析:(1)見(jiàn)解析;(2);(3)見(jiàn)解析【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質(zhì),可得AE垂直平分BC,F(xiàn)為垂直平分線AE上點(diǎn),即可得出結(jié)論;(2)根據(jù)(1)的結(jié)論可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出,根據(jù)外角性質(zhì)可得計(jì)算即可;(3)在CF上截取CM=DF,連接AM,證明△ACM≌△ADF(SAS),進(jìn)而證得△AFM為等邊三角形即可.【詳解】(1)證明:∵AE為等腰△ABC底邊BC上的高線,AB=AC,,∠AEB=∠AEC=90°,BE=CE,∴AE垂直平分BE,F(xiàn)在AE上,;(2),,,,由(1)知,AE平分∠BAC,,,故答案為:60°;(3)在CF上截取CM=DF,連接AM,由(1)可知,∠ABC=∠ACB,∠FBC=∠FCB,,,,,在△ACM和△ADF中,∴△ACM≌△ADF(SAS),,,∴△AFM為等邊三角形,,.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),垂直平分線的性質(zhì),三角形全等的判定和性質(zhì),等邊三角形的判定和性質(zhì),掌握三角形全等的判定和性質(zhì)是解題的關(guān)鍵.12.如圖1,在等邊△ABC中,E、D兩點(diǎn)分別在邊AB、BC上,BE=CD,AD、CE相交于點(diǎn)F.(1)求∠AFE的度數(shù);(2)過(guò)點(diǎn)A作AH⊥CE于H,求證:2FH+FD=CE;(3)如圖2,延長(zhǎng)CE至點(diǎn)P,連接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以過(guò)點(diǎn)A作∠KAF=60°,AK交PC于點(diǎn)K,連接KB)解析:(1)∠AFE=60°;(2)見(jiàn)解析;(3)【解析】【分析】(1)通過(guò)證明得到對(duì)應(yīng)角相等,等量代換推導(dǎo)出;(2)由(1)得到,則在中利用30°所對(duì)的直角邊等于斜邊的一半,等量代換可得;(3)通過(guò)在PF上取一點(diǎn)K使得KF=AF,作輔助線證明和全等,利用對(duì)應(yīng)邊相等,等量代換得到比值.(通過(guò)將順時(shí)針旋轉(zhuǎn)60°也是一種思路.)【詳解】(1)解:如圖1中.∵為等邊三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在和中,,∴(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)證明:如圖1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一點(diǎn)K使得KF=AF,連接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK為等邊三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在和中,,∴(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴,∴,∵∴.【點(diǎn)睛】掌握等邊三角形、直角三角形的性質(zhì),及三角形全等的判定通過(guò)一定等量代換為本題的關(guān)鍵.13.在《經(jīng)典幾何圖形的研究與變式》一課中,龐老師出示了一個(gè)問(wèn)題:“如圖1,等腰直角三角形的三個(gè)頂點(diǎn)分別落在三條等距的平行線,,上,,且每?jī)蓷l平行線之間的距離為1,求AB的長(zhǎng)度”.在研究這道題的解法和變式的過(guò)程中,同學(xué)們提出了很多想法:(1)小明說(shuō):我只需要過(guò)B、C向作垂線,就能利用全等三角形的知識(shí)求出AB的長(zhǎng).(2)小林說(shuō):“我們可以改變的形狀.如圖2,,,且每?jī)蓷l平行線之間的距離為1,求AB的長(zhǎng).”(3)小謝說(shuō):“我們除了改變的形狀,還能改變平行線之間的距離.如圖3,等邊三角形ABC三個(gè)頂點(diǎn)分別落在三條平行線,,上,且與之間的距離為1,與之間的距離為2,求AB的長(zhǎng)、”請(qǐng)你根據(jù)3位同學(xué)的提示,分別求出三種情況下AB的長(zhǎng)度.解析:(1);(2);(3)【解析】【分析】(1)分別過(guò)點(diǎn)B,C向l1作垂線,交l1于M,N兩點(diǎn),證明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分別過(guò)點(diǎn)B,C向l1作垂線,交l1于點(diǎn)P,Q兩點(diǎn),在l1上取M,N使∠AMB=∠CNA=120°,證明△AMB≌△CAN,得到CN=AM,再通過(guò)△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的長(zhǎng);(3)在l3上找M和N,使得∠BNC=∠AMC=60°,過(guò)B作l3的垂線,交l3于點(diǎn)P,過(guò)A作l3的垂線,交l3于點(diǎn)Q,證明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,從而得到PC,結(jié)合BP算出BC的長(zhǎng),即為AB.【詳解】解:(1)如圖,分別過(guò)點(diǎn)B,C向l1作垂線,交l1于M,N兩點(diǎn),由題意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=;(2)分別過(guò)點(diǎn)B,C向l1作垂線,交l1于P,Q兩點(diǎn),在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,,∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=BM,NQ=NC,∵PB=1,CQ=2,設(shè)PM=a,NQ=b,∴,,解得:,,∴CN=AM==,∴AB===;(3)如圖,在l3上找M和N,使得∠BNC=∠AMC=60°,過(guò)B作l3的垂線,交于點(diǎn)P,過(guò)A作l3的垂線,交于點(diǎn)Q,∵△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,,∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,,即,解得:NP=,∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,,即,解得:QM=,∴AM==CN,∴PC=CN-NP=AM-NP=,在△BPC中,BP2+CP2=BC2,即BC=,∴AB=BC=.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),平行線之間的距離,等腰三角形的性質(zhì),等邊三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是利用平行線構(gòu)造全等三角形,再利用全等三角形的性質(zhì)以及勾股定理求解.14.在中,,,是的角平分線,于點(diǎn).(1)如圖1,連接,求證:是等邊三角形;(2)如圖2,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn)重合),以為一邊,在下方作,交延長(zhǎng)線于點(diǎn).求證:;(3)如圖3,點(diǎn)是線段上的點(diǎn),以為一邊,在的下方作,交延長(zhǎng)線于點(diǎn).直接寫(xiě)出,與數(shù)量之間的關(guān)系.解析:(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)結(jié)論:,證明見(jiàn)解析.【解析】【分析】(1)先根據(jù)直角三角形的性質(zhì)得出,再根據(jù)角平分線的性質(zhì)可得,然后根據(jù)三角形的判定定理與性質(zhì)可得,最后根據(jù)等邊三角形的判定即可得證;(2)如圖(見(jiàn)解析),延長(zhǎng)ED使得,連接MF,先根據(jù)直角三角形的性質(zhì)、等邊三角形的判定得出是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證;(3)如圖(見(jiàn)解析),參照題(2),先證是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證.【詳解】(1)是的角平分線,在和中,是等邊三角形;(2)如圖,延長(zhǎng)ED使得,連接MF,是的角平分線,是等邊三角形,即在和中,,即即;(3)結(jié)論:,證明過(guò)程如下:如圖,延長(zhǎng)BD使得,連接NH由(2)可知,是等邊三角形,即在和中,,即即.【點(diǎn)睛】本題考查了直角三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2)和(3),通過(guò)作輔助線,構(gòu)造一個(gè)等邊三角形是解題關(guān)鍵.15.某校八年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點(diǎn)E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點(diǎn)Q,請(qǐng)你寫(xiě)出∠BQC與∠A的數(shù)量關(guān)系,并證明.解析:(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見(jiàn)解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和化為角平分線的定義;(2)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結(jié)論;(3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論:.【點(diǎn)睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.二、選擇題16.如圖,實(shí)數(shù)﹣3、x、3、y在數(shù)軸上的對(duì)應(yīng)點(diǎn)分別為M、N、P、Q,這四個(gè)數(shù)中絕對(duì)值最小的數(shù)對(duì)應(yīng)的點(diǎn)是()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q解析:B【解析】【分析】【詳解】∵實(shí)數(shù)-3,x,3,y在數(shù)軸上的對(duì)應(yīng)點(diǎn)分別為M、N、P、Q,∴原點(diǎn)在點(diǎn)P與N之間,∴這四個(gè)數(shù)中絕對(duì)值最小的數(shù)對(duì)應(yīng)的點(diǎn)是點(diǎn)N.故選B.17.下列判斷正確的是()A.3a2bc與bca2不是同類(lèi)項(xiàng)B.的系數(shù)是2C.單項(xiàng)式﹣x3yz的次數(shù)是5D.3x2﹣y+5xy5是二次三項(xiàng)式解析:C【解析】【分析】根據(jù)同類(lèi)項(xiàng)的定義,單項(xiàng)式和多項(xiàng)式的定義解答.【詳解】A.3d2bc與bca2所含有的字母以及相同字母的指數(shù)相同,是同類(lèi)項(xiàng),故本選項(xiàng)錯(cuò)誤.B.的系數(shù)是,故本選項(xiàng)錯(cuò)誤.C.單項(xiàng)式﹣x3yz的次數(shù)是5,故本選項(xiàng)正確.D.3x2﹣y+5xy5是六次三項(xiàng)式,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了同類(lèi)項(xiàng),多項(xiàng)式以及單項(xiàng)式的概念及性質(zhì).需要學(xué)生對(duì)概念的記憶,屬于基礎(chǔ)題.18.如圖,已知線段AB的長(zhǎng)度為a,CD的長(zhǎng)度為b,則圖中所有線段的長(zhǎng)度和為()A.3a+b B.3a-b C.a(chǎn)+3b D.2a+2b解析:A【解析】【分析】依據(jù)線段AB長(zhǎng)度為a,可得AB=AC+CD+DB=a,依據(jù)CD長(zhǎng)度為b,可得AD+CB=a+b,進(jìn)而得出所有線段的長(zhǎng)度和.【詳解】∵線段AB長(zhǎng)度為a,∴AB=AC+CD+DB=a,又∵CD長(zhǎng)度為b,∴AD+CB=a+b,∴圖中所有線段的長(zhǎng)度和為:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故選A.【點(diǎn)睛】本題考查了比較線段的長(zhǎng)度和有關(guān)計(jì)算,主要考查學(xué)生能否求出線段的長(zhǎng)度和知道如何數(shù)圖形中的線段.19.已知max表示取三個(gè)數(shù)中最大的那個(gè)數(shù),例如:當(dāng)x=9時(shí),max=81.當(dāng)max時(shí),則x的值為()A. B. C. D.解析:C【解析】【分析】利用max的定義分情況討論即可求解.【詳解】解:當(dāng)max時(shí),x≥0①=,解得:x=,此時(shí)>x>x2,符合題意;②x2=,解得:x=;此時(shí)>x>x2,不合題意;③x=,>x>x2,不合題意;故只有x=時(shí),max.故選:C.【點(diǎn)睛】此題主要考查了新定義,正確理解題意分類(lèi)討論是解題關(guān)鍵.20.我國(guó)古代《易經(jīng)》一書(shū)中記載了一種“結(jié)繩計(jì)數(shù)”的方法,一女子在從右到左依次排列的繩子上打結(jié),滿(mǎn)六進(jìn)一,用來(lái)記錄采集到的野果數(shù)量,下列圖示中表示91顆的是()A. B.C. D.解析:B【解析】【分析】由于從右到左依次排列的繩子上打結(jié),滿(mǎn)六進(jìn)一,所以從右到左的數(shù)分別進(jìn)行計(jì)算,然后把它們相加即可得出正確答案.【詳解】解:A、5+3×6+1×6×6=59(顆),故本選項(xiàng)錯(cuò)誤;B、1+3×6+2×6×6=91(顆),故本選項(xiàng)正確;C、2+3×6+1×6×6=56(顆),故本選項(xiàng)錯(cuò)誤;D、1+2×6+3×6×6=121(顆),故本選項(xiàng)錯(cuò)誤;故選:B.【點(diǎn)睛】本題是以古代“結(jié)繩計(jì)數(shù)”為背景,按滿(mǎn)六進(jìn)一計(jì)數(shù),運(yùn)用了類(lèi)比的方法,根據(jù)圖中的數(shù)學(xué)列式計(jì)算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識(shí),另一方面也考查了學(xué)生的思維能力.21.將連續(xù)的奇數(shù)1、3、5、7、…、,按一定規(guī)律排成如表:圖中的T字框框住了四個(gè)數(shù)字,若將T字框上下左右移動(dòng),按同樣的方式可框住另外的四個(gè)數(shù),若將T字框上下左右移動(dòng),則框住的四個(gè)數(shù)的和不可能得到的數(shù)是()A.22 B.70 C.182 D.206解析:D【解析】【分析】根據(jù)題意設(shè)T字框第一行中間數(shù)為,則其余三數(shù)分別為,,,根據(jù)其相鄰數(shù)字之間都是奇數(shù),進(jìn)而得出的個(gè)位數(shù)只能是3或5或7,然后把T字框中的數(shù)字相加把x代入即可得出答案.【詳解】設(shè)T字框第一行中間數(shù)為,則其余三數(shù)分別為,,,,這三個(gè)數(shù)在同一行的個(gè)位數(shù)只能是3或5或7T字框中四個(gè)數(shù)字之和為A.令解得,符合要求;B.令解得,符合要求;C.令解得,符合要求;D.令解得,因?yàn)?,不在同一行,所以不符合要求.故選D.【點(diǎn)睛】本題考查的是列代數(shù)式,規(guī)律型:數(shù)字的變化類(lèi),一元一次方程的應(yīng)用,解題關(guān)鍵是把題意理解透徹以及找出其規(guī)律即可.22.﹣3的相反數(shù)是()A. B. C. D.解析:D【解析】【分析】相反數(shù)的定義是:如果兩個(gè)數(shù)只有符號(hào)不同,我們稱(chēng)其中一個(gè)數(shù)為另一個(gè)數(shù)的相反數(shù),特別地,0的相反數(shù)還是0.【詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【點(diǎn)睛】本題考查相反數(shù),題目簡(jiǎn)單,熟記定義是關(guān)鍵.23.晚上七點(diǎn)剛過(guò),小強(qiáng)開(kāi)始做數(shù)學(xué)作業(yè),一看鐘,發(fā)現(xiàn)此時(shí)時(shí)針和分針在同一直線上;做完數(shù)學(xué)作業(yè)八點(diǎn)不到,此時(shí)時(shí)針和分針又在同一直線上,則小強(qiáng)做數(shù)學(xué)作業(yè)花了多少時(shí)間()A.30分鐘 B.35分鐘 C.分鐘 D.分鐘解析:D【解析】【分析】由題意知,開(kāi)始寫(xiě)作業(yè)時(shí),分針和時(shí)針組成一平角,寫(xiě)完作業(yè)時(shí),分針和時(shí)針重合.設(shè)小強(qiáng)做數(shù)學(xué)作業(yè)花了x分鐘,根據(jù)分針追上時(shí)針時(shí)多轉(zhuǎn)了180°列方程求解即可.【詳解】分針?biāo)俣龋?0度÷5分=6度/分;時(shí)針?biāo)俣龋?0度÷60分=0.5度/分.設(shè)小強(qiáng)做數(shù)學(xué)作業(yè)花了x分鐘,由題意得6x-0.5x=180,解之得x=.故選D.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用---追擊問(wèn)題,解答本題的關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.24.下列判斷正確的是()A.有理數(shù)的絕對(duì)值一定是正數(shù).B.如果兩個(gè)數(shù)的絕對(duì)值相等,那么這兩個(gè)數(shù)相等.C.如果一個(gè)數(shù)是正數(shù),那么這個(gè)數(shù)的絕對(duì)值是它本身.D.如果一個(gè)數(shù)的絕對(duì)值是它本身,那么這個(gè)數(shù)是正數(shù).解析:C【解析】試題解析:A∵0的絕對(duì)值是0,故本選項(xiàng)錯(cuò)誤.B∵互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等,故本選項(xiàng)正確.C如果一個(gè)數(shù)是正數(shù),那么這個(gè)數(shù)的絕對(duì)值是它本身.D∵0的絕對(duì)值是0,故本選項(xiàng)錯(cuò)誤.故選C.25.如圖是小明制作的一張數(shù)字卡片,在此卡片上可以用一個(gè)正方形圈出個(gè)位置的個(gè)數(shù)(如,,,,,,,,,,,,,,,).若用這樣的正方形圈出這張數(shù)字卡片上的個(gè)數(shù),則圈出的個(gè)數(shù)的和不可能為下列數(shù)中的()A. B.C. D.解析:C【解析】【分析】由題意設(shè)第一列第一行的數(shù)為x,依次表示每個(gè)數(shù),并相加進(jìn)行分析得出選項(xiàng).【詳解】解:設(shè)第一列第一行的數(shù)為x,第一行四個(gè)數(shù)分別為,第二行四個(gè)數(shù)分別為,第三行四個(gè)數(shù)分別為,第四行四個(gè)數(shù)分別為,16個(gè)數(shù)相加得到,當(dāng)相加數(shù)為208時(shí)x為1,當(dāng)相加數(shù)為4
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 秋人教版歷史與社會(huì)九年級(jí)上冊(cè)教學(xué)課件:2.3. 美國(guó)的資本主義改革
- 2026年南京鐵道職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考試題帶答案解析
- 牙醫(yī)創(chuàng)意活動(dòng)方案策劃(3篇)
- 青年讀書(shū)活動(dòng)策劃方案(3篇)
- 門(mén)店假期活動(dòng)策劃方案(3篇)
- 杜蕾斯廣告策劃活動(dòng)方案(3篇)
- 2026年重慶商務(wù)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題帶答案解析
- 三年(2023-2025)湖南中考語(yǔ)文真題分類(lèi)匯編:專(zhuān)題06 詩(shī)歌鑒賞(解析版)
- 福建省泉州市石獅第八中學(xué)2026年春季招聘教師參考題庫(kù)及答案1套
- 2026青海師大附中體育教師招聘參考題庫(kù)及答案1套
- 2025年塔吊指揮員考試題及答案
- 2025福建閩投永安抽水蓄能有限公司招聘21人備考題庫(kù)附答案
- 2025年昆明市呈貢區(qū)城市投資集團(tuán)有限公司及下屬子公司第二批招聘(11人)備考考試題庫(kù)及答案解析
- 2025中國(guó)高凈值人群品質(zhì)養(yǎng)老報(bào)告-胡潤(rùn)百富-202512
- 2025四川綿陽(yáng)市江油鴻飛投資(集團(tuán))有限公司招聘40人筆試考試備考題庫(kù)及答案解析
- 北京市公安局輔警崗位招聘300人考試歷年真題匯編帶答案解析
- 2025中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-無(wú)創(chuàng)正壓通氣護(hù)理技術(shù)
- 2025年急性缺血性卒中及溶栓護(hù)理考試試題及答案
- 室內(nèi)裝修冬季施工供暖措施方案
- 2024年《廣西壯族自治區(qū)建筑裝飾裝修工程消耗量定額》(上冊(cè))
- DBJT15-101-2022 建筑結(jié)構(gòu)荷載規(guī)范
評(píng)論
0/150
提交評(píng)論