版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一、解答題1.如圖1,點是第二象限內(nèi)一點,軸于,且是軸正半軸上一點,是x軸負(fù)半軸上一點,且.(1)(),()(2)如圖2,設(shè)為線段上一動點,當(dāng)時,的角平分線與的角平分線的反向延長線交于點,求的度數(shù):(注:三角形三個內(nèi)角的和為)(3)如圖3,當(dāng)點在線段上運(yùn)動時,作交于的平分線交于,當(dāng)點在運(yùn)動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.2.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)3.如圖1,MN∥PQ,點C、B分別在直線MN、PQ上,點A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).4.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當(dāng)點B在點A的左側(cè)時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數(shù).②如圖3,當(dāng)點B在點A的右側(cè)時,設(shè)∠ABC=α,∠ADC=β,請你求出∠BFD的度數(shù).(用含有α,β的式子表示)5.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點O射出,在平面鏡AB上經(jīng)點P反射后,到達(dá)直線n上的點Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點O以適當(dāng)?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.6.已知,AB∥DE,點C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點C作CF⊥BC交ED的延長線于點F,探究∠ABC和∠F之間的數(shù)量關(guān)系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點G,連接GB并延長至點H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.閱讀材料:求1+2+22+23+24+…+22017的值.解:設(shè)S=1+2+22+23+24+…+22017,將等式兩邊同時乘以2得:2S=2+22+23+24+…+22017+22018將下式減去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1請你仿照此法計算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n為正整數(shù));(3)1+2×2+3×22+4×23+…+9×28+10×29.8.對數(shù)運(yùn)算是高中常用的一種重要運(yùn)算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對數(shù)叫做常用對數(shù),此時log10N可記為lgN.當(dāng)a>0,且a≠1,M>0,N>0時,loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)9.觀察下列各式:;;;……根據(jù)上面的等式所反映的規(guī)律,(1)填空:______;______;(2)計算:10.已知,在計算:的過程中,如果存在正整數(shù),使得各個數(shù)位均不產(chǎn)生進(jìn)位,那么稱這樣的正整數(shù)為“本位數(shù)”.例如:2和30都是“本位數(shù)”,因為沒有進(jìn)位,沒有進(jìn)位;15和91都不是“本位數(shù)”,因為,個位產(chǎn)生進(jìn)位,,十位產(chǎn)生進(jìn)位.則根據(jù)上面給出的材料:(1)下列數(shù)中,如果是“本位數(shù)”請在后面的括號內(nèi)打“√”,如果不是“本位數(shù)”請在后面的括號內(nèi)畫“×”.106();111();400();2015().(2)在所有的四位數(shù)中,最大的“本位數(shù)”是,最小的“本位數(shù)”是.(3)在所有三位數(shù)中,“本位數(shù)”一共有多少個?11.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動______位,其算術(shù)平方根的小數(shù)點向______移動______位.(2)已知,,則_____;______.(3),,,……小數(shù)點的變化規(guī)律是_______________________.(4)已知,,則______.12.在已有運(yùn)算的基礎(chǔ)上定義一種新運(yùn)算:,的運(yùn)算級別高于加減乘除運(yùn)算,即的運(yùn)算順序要優(yōu)先于運(yùn)算,試根據(jù)條件回答下列問題.(1)計算:;(2)若,則;(3)在數(shù)軸上,數(shù)的位置如下圖所示,試化簡:;(4)如圖所示,在數(shù)軸上,點分別以1個單位每秒的速度從表示數(shù)-1和3的點開始運(yùn)動,點向正方向運(yùn)動,點向負(fù)方向運(yùn)動,秒后點分別運(yùn)動到表示數(shù)和的點所在的位置,當(dāng)時,求的值.13.如圖1,在平面直角坐標(biāo)系中,點A為x軸負(fù)半軸上一點,點B為x軸正半軸上一點,,,其中a、b滿足關(guān)系式:.______,______,的面積為______;如圖2,石于點C,點P是線段OC上一點,連接BP,延長BP交AC于點當(dāng)時,求證:BP平分;提示:三角形三個內(nèi)角和等于如圖3,若,點E是點A與點B之間上一點連接CE,且CB平分問與有什么數(shù)量關(guān)系?請寫出它們之間的數(shù)量關(guān)系并請說明理由.14.綜合與實踐課上,同學(xué)們以“一個直角三角形和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.(3)如圖3,若∠A=30°,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請寫出與的數(shù)量關(guān)系并說明理由.15.在平面直角坐標(biāo)系中,點坐標(biāo)為,點坐標(biāo)為,過點作直線軸,垂足為,交線段于點.(1)如圖1,過點作,垂足為,連接.①填空:的面積為______;②點為直線上一動點,當(dāng)時,求點的坐標(biāo);(2)如圖2,點為線段延長線上一點,連接,,線段交于點,若,請直接寫出點的坐標(biāo)為______.16.如果x是一個有理數(shù),我們定義x表示不小于x的最小整數(shù).如3.24,2.62,55,66.由定義可知,任意一個有理數(shù)都能寫成xxb的形式(0≤b<1).(1)直接寫出x與x,x1的大小關(guān)系;提示1:用“不完全歸納法”推導(dǎo)x與x,x1的大小關(guān)系;提示2:用“代數(shù)推理”的方法推導(dǎo)x與x,x1的大小關(guān)系.(2)根據(jù)(1)中的結(jié)論解決下列問題:①直接寫出滿足3m74的m取值范圍;②直接寫出方程3.5n22n1的解..17.如圖,在平面直角坐標(biāo)系中,四邊形各頂點的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過平移后得到四邊形,點的對應(yīng)點的坐標(biāo)為.(1)請直接寫點、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點,連接、,使,若存在這樣一點,求出點的坐標(biāo);若不存在,請說明理由.18.如圖,在平面直角坐標(biāo)系中,點,,將線段AB進(jìn)行平移,使點A剛好落在x軸的負(fù)半軸上,點B剛好落在y軸的負(fù)半軸上,A,B的對應(yīng)點分別為,,連接交y軸于點C,交x軸于點D.(1)線段可以由線段AB經(jīng)過怎樣的平移得到?并寫出,的坐標(biāo);(2)求四邊形的面積;(3)P為y軸上的一動點(不與點C重合),請?zhí)骄颗c的數(shù)量關(guān)系,給出結(jié)論并說明理由.19.我國傳統(tǒng)數(shù)學(xué)名著《九章算術(shù)》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據(jù)以上譯文,提出以下兩個問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準(zhǔn)備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請問商人有幾種購買方法?列出所有的可能.20.每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機(jī)器,現(xiàn)有甲、乙兩種型號的機(jī)器可選,其中每臺的價格、產(chǎn)量如下表:甲型機(jī)器乙型機(jī)器價格(萬元/臺)ab產(chǎn)量(噸/月)240180經(jīng)調(diào)查:購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多12萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器多6萬元.(1)求a、b的值;(2)若該公司購買新機(jī)器的資金不超過216萬元,請問該公司有哪幾種購買方案?(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設(shè)計一種最省錢的購買方案.21.某公園的門票價格如下表所示:某中學(xué)七年級(1)、(2)兩個班計劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個班都以班為單位分別購票,則一共應(yīng)付1172元,如果兩個班聯(lián)合起來,作為一個團(tuán)體購票,則需付1078元.(1)列方程求出兩個班各有多少學(xué)生;(2)如果兩個班聯(lián)合起來買票,是否可以買單價為9元的票?你有什么省錢的方法來幫他們買票呢?請給出最省錢的方案.22.已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.(1)如圖1,過點B作BD⊥AM于點D,∠BAD與∠C有何數(shù)量關(guān)系,并說明理由;(2)如圖2,在(1)問的條件下,點E,F(xiàn)在DM上,連接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度數(shù).23.學(xué)校組織名同學(xué)和名教師參加校外學(xué)習(xí)交流活動現(xiàn)打算選租大、小兩種客車,大客車載客量為人/輛,小客車載客量為人/輛(1)學(xué)校準(zhǔn)備租用輛客車,有幾種租車方案?(2)在(1)的條件下,若大客車租金為元/輛,小客車租金為元/輛,哪種租車方案最省錢?(3)學(xué)校臨時增加名學(xué)生和名教師參加活動,每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊.同學(xué)先坐滿大客車,再依次坐滿小客車,最后一輛小客車至少要有人,請你幫助設(shè)計租車方案24.如圖,在平面直角坐標(biāo)系中,已知兩點,且a、b滿足點在射線AO上(不與原點重合).將線段AB平移到DC,點D與點A對應(yīng),點C與點B對應(yīng),連接BC,直線AD交y軸于點E.請回答下列問題:(1)求A、B兩點的坐標(biāo);(2)設(shè)三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設(shè),請給出,滿足的數(shù)量關(guān)系式,并說明理由.25.某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.(1)若現(xiàn)有A型板材150張,B型板材300張,可制作豎式和橫式兩種無蓋箱子各多少個?(2)若該工廠準(zhǔn)備用不超過24000元資金去購買A、B兩種型號板材,制作豎式、橫式箱子共100個,已知A型板材每張20元,B型板材每張60元,問最多可以制作豎式箱子多少個?(3)若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材(不計損耗),用切割的板材制作兩種類型的箱子,要求豎式箱子不少于10個,且材料恰好用完,則最多可以制作豎式箱子多少個?26.某市出租車的起步價是7元(起步價是指不超過行程的出租車價格),超過3km行程后,其中除的行程按起步價計費(fèi)外,超過部分按每千米1.6元計費(fèi)(不足按計算).如果僅去程乘出租車而回程時不乘坐此車,并且去程超過,那么顧客還需付回程的空駛費(fèi),超過部分按每千米0.8元計算空駛費(fèi)(即超過部分實際按每千米2.4元計費(fèi)).如果往返都乘同一出租車并且中間等候時間不超過3分鐘,則不收取空駛費(fèi)而加收1.6元等候費(fèi).現(xiàn)設(shè)小文等4人從市中心A處到相距()的B處辦事,在B處停留的時間在3分鐘以內(nèi),然后返回A處.現(xiàn)在有兩種往返方案:方案一:去時4人同乘一輛出租車,返回都乘公交車(公交車票為每人2元);方案二:4人乘同一輛出租車往返.問選擇哪種計費(fèi)方式更省錢?(寫出過程)27.如圖,數(shù)軸上兩點A、B對應(yīng)的數(shù)分別是-1,1,點P是線段AB上一動點,給出如下定義:如果在數(shù)軸上存在動點Q,滿足|PQ|=2,那么我們把這樣的點Q表示的數(shù)稱為連動數(shù),特別地,當(dāng)點Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)在-2.5,0,2,3.5四個數(shù)中,連動數(shù)有;(直接寫出結(jié)果)(2)若k使得方程組中的x,y均為連動數(shù),求k所有可能的取值;(3)若關(guān)于x的不等式組的解集中恰好有4個連動整數(shù),求這4個連動整數(shù)的值及a的取值范圍.28.在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD.(1)求點C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;(2)在y軸上是否存在一點P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標(biāo);若不存在,試說明理由;(3)點P是直線BD上一個動點,連接PC、PO,當(dāng)點P在直線BD上運(yùn)動時,請直接寫出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系29.某生態(tài)柑橘園現(xiàn)有柑橘21噸,計劃租用A,B兩種型號的貨車將柑橘運(yùn)往外地銷售.已知滿載時,用2輛A型車和3輛B型車一次可運(yùn)柑橘12噸;用3輛A型車和4輛B型車一次可運(yùn)柑橘17噸.(1)1輛A型車和1輛B型車滿載時一次分別運(yùn)柑橘多少噸?(2)若計劃租用A型貨車m輛,B型貨車n輛,一次運(yùn)完全部柑橘,且每輛車均為滿載.①請幫柑橘園設(shè)計租車方案;②若A型車每輛需租金120元/次,B型車每輛需租金100元/次.請選出最省錢的租車方案,并求出最少租車費(fèi).30.學(xué)校美術(shù)組要去商店購買鉛筆和橡皮,若購買60支鉛筆和30塊橡皮,則需按零售價購買,共支付30元;若購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.(1)求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?(2)小亮同學(xué)用4元錢在這家商店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),共有哪幾種購買方案?【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負(fù)數(shù)的和為零,各項分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進(jìn)而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標(biāo)是(-2,0)、B的坐標(biāo)是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵M(jìn)N平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點的坐標(biāo)計算出相應(yīng)的線段的長和判斷線段與坐標(biāo)軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點在于過拐點作平行線.3.(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補(bǔ)得到∴、∠CAB+∠ACD=180°,由鄰補(bǔ)角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點A作AD∥MN,∵M(jìn)N∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準(zhǔn)確的推導(dǎo)是解決本題的關(guān)鍵.4.(1)見解析;(2)55°;(3)【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖2,過點作,當(dāng)點在點的左側(cè)時,根據(jù),,根據(jù)平行線的性質(zhì)及角平分線的定義即可求的度數(shù);②如圖3,過點作,當(dāng)點在點的右側(cè)時,,,根據(jù)平行線的性質(zhì)及角平分線的定義即可求出的度數(shù).【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數(shù)為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數(shù)為.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).5.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.6.(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質(zhì)可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質(zhì)可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質(zhì)得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結(jié)論;(3)過點作,延長至點,先根據(jù)平行線的性質(zhì)可得,,從而可得,再根據(jù)角平分線的定義、結(jié)合(2)的結(jié)論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點作,,,,,即,,;(2)如圖,過點作,,,,,即,,,,,;(3)如圖,過點作,延長至點,,,,,平分,平分,,由(2)可知,,,又,.【點睛】本題考查了平行線的性質(zhì)、對頂角相等、角平分線的定義等知識點,熟練掌握平行線的性質(zhì)是解題關(guān)鍵.7.(1)210-1;(2);(3)9×210+1.【分析】(1)根據(jù)題目中材料可以得到用類比的方法得到1+2+22+23+…+29的值;(2)根據(jù)題目中材料可以得到用類比的方法得到1+5+52+53+54+…+5n的值.(3)根據(jù)題目中的信息,運(yùn)用類比的數(shù)學(xué)思想可以解答本題.【詳解】解:(1)設(shè)S=1+2+22+23+…+29,將等式兩邊同時乘以2得:2S=2+22+23+24+…+29+210,將下式減去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案為210-1;(2)設(shè)S=1+5+52+53+54+…+5n,將等式兩邊同時乘以5得:5S=5+52+53+54+55+…+5n+5n+1,將下式減去上式得5S-S=5n+1-1,即S=,即1+5+52+53+54+…+5n=;(3)設(shè)S=1+2×2+3×22+4×23+…+9×28+10×29,將等式兩邊同時乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,將上式減去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【點睛】本題考查有理數(shù)的混合運(yùn)算、數(shù)字的變化類,解題的關(guān)鍵是明確題意,發(fā)現(xiàn)數(shù)字的變化規(guī)律.8.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運(yùn)算的題目,解答本題的關(guān)鍵是理解給出的對數(shù)的定義.9.(1);;(2).【分析】(1)根據(jù)已知數(shù)據(jù)得出規(guī)律,,進(jìn)而求出即可;(2)利用規(guī)律拆分,再進(jìn)一步交錯約分得出答案即可.【詳解】解:(1);;(2)===.【點睛】此題主要考查了實數(shù)運(yùn)算中的規(guī)律探索,根據(jù)已知運(yùn)算得出數(shù)字之間的變化規(guī)律是解決問題的關(guān)鍵.10.(1)×,√,×,×;(2)3332;1000;(3)(個).【分析】(1)根據(jù)“本位數(shù)”的定義即可判斷;(2)要想保證不進(jìn)位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000;(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【詳解】解:(1)有進(jìn)位;沒有進(jìn)位;有進(jìn)位;有進(jìn)位;故答案為:×,√,×,×.(2)要想保證不進(jìn)位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000,故答案為:3332,1000.(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【點睛】本題考查了新定義計算題,準(zhǔn)確理解新定義的內(nèi)涵是解題的關(guān)鍵.11.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計算即可得到結(jié)果;(3)歸納總結(jié)得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計算即可得到結(jié)果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動兩位,其算術(shù)平方根的小數(shù)點向右移動一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點的變化規(guī)律是:被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)∵,,∴,∴,∴y=-0.01.【點睛】此題考查了立方根,以及算術(shù)平方根,弄清題中的規(guī)律是解本題的關(guān)鍵.12.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=【分析】(1)根據(jù)題中的新運(yùn)算列出算式,計算即可得到結(jié)果;(2)根據(jù)題中的新運(yùn)算列出方程,解方程即可得到結(jié)果;(3)根據(jù)題中的新運(yùn)算列出代數(shù)式,根據(jù)數(shù)軸得出x、y的取值范圍進(jìn)行化簡即可;(4)根據(jù)A、B在數(shù)軸上的移動方向和速度可分別用代數(shù)式表示出數(shù)和,再根據(jù)(2)的解題思路即可得到結(jié)果.【詳解】解:(1);(2)依題意得:,化簡得:,所以或,解得:x=5或x=1;(3)由數(shù)軸可知:0<x<1,y<0,所以===(4)依題意得:數(shù)a=?1+t,b=3?t;因為,所以,化簡得:,解得:t=3或t=,所以當(dāng)時,的值為3或.【點睛】本題主要考查了定義新運(yùn)算、有理數(shù)的混合運(yùn)算和解一元一次方程,根據(jù)定義新運(yùn)算列出關(guān)系式是解題的關(guān)鍵.13.(1);;6;(2)證明見解析;(3)
,理由見解析.【詳解】分析:(1)求出CD的長度,再根據(jù)三角形的面積公式列式計算即可得解;(2)根據(jù)等角的余角相等解答即可;(3)首先證明∠ACD=∠ACE,推出∠DCE=2∠ACD,再證明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解決問題;【解答】(1)解:如圖1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵點C(0,-4),D(-3,-4),∴CD=3,且CD∥x軸,∴△BCD的面積=×4×3=6;故答案為-4,-3,6.(2)如圖2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如圖3中,結(jié)論:∠BEC=2∠BCO.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-4),D(-3,-4),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,點睛:本題考查了坐標(biāo)與圖形性質(zhì),三角形的角平分線,三角形的面積,三角形的內(nèi)角和定理,三角形的外角性質(zhì)等知識,熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.14.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過點C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.15.(1)①6;②的坐標(biāo)為,;(2).【解析】【分析】(1)①易證四邊形AECO為矩形,則點B到AE的距離為OA,AE=OC=3,OA=CE=4,S△ABE=AE?OA,即可得出結(jié)果;②設(shè)點的坐標(biāo)為,分兩種情況:點在點上方,連接,得=++=8,點在點的下方,得=8,分別列出方程解方程即可得出結(jié)果;(2)由S△AOF=S△QBF,則S△AOB=S△QOB,△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,得出OA=CQ,即可得出結(jié)果.【詳解】解:(1)①∵CD⊥x軸,AE⊥CD,∴AE∥x軸,四邊形AECO為矩形,點B到AE的距離為OA,∵點A(0,4),點C(3,0),∴AE=OC=3,OA=CE=4,∴S△ABE=AE?OA=×3×4=6,故答案為:6;②設(shè)點的坐標(biāo)為.(i)∵點坐標(biāo)為,點坐標(biāo)為,∴.∵,∴.∴點在點上方,連接(如圖1).根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點的坐標(biāo)為.(ii)點在點的下方,連接(如圖2).∵.∴.∴點在點的下方,根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點的坐標(biāo)為.(2)(2)∵S△AOF=S△QBF,如圖3所示:∴S△AOB=S△QOB,∵△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,∴OA=CQ,∴點Q的坐標(biāo)為(3,4),故答案為:(3,4).【點睛】本題是三角形綜合題,主要考查了圖形與點的坐標(biāo)、矩形的判定與性質(zhì)、三角形面積的計算等知識,熟練掌握圖形與點的坐標(biāo),靈活運(yùn)用割補(bǔ)法表示三角形面積列出方程是解題的關(guān)鍵.16.(1);(2)①;②或.【分析】(1)提示1:先列出4個x的值,分別得出與的大小關(guān)系,再利用“不完全歸納法”即可得;提示2:先根據(jù)“”得出,再根據(jù)“”即可得;(2)①根據(jù)(1)的結(jié)論得出,據(jù)此解不等式組即可得;②先根據(jù)(1)的結(jié)論得出,再解不等式組求出n的取值范圍,從而可得的取值范圍,然后根據(jù)“為整數(shù)”可得出方程,由此解方程即可得.【詳解】(1)提示1:當(dāng)時,,則當(dāng)時,,則當(dāng)時,,則當(dāng)時,,則由“不完全歸納法”可得:;提示2:,且;(2)①由(1)的結(jié)論得:解得;②由(1)的結(jié)論得:解得為整數(shù)則或解得或.【點睛】本題考查了一元一次不等式組的應(yīng)用、解一元一次方程等知識點,理解新定義,正確求解不等式組是解題關(guān)鍵.17.(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長為3,高為2,即可求出面積;(3)設(shè)點的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個單位,向上平移一個單位;∵,,,∴;(2)如圖,延長交x軸于點E,過點做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點的坐標(biāo)為,∵,,∴,∴點的坐標(biāo)為或.【點睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.18.(1)向左平移4個單位,再向下平移6個單位,,;(2)24;(3)見解析【分析】(1)利用平移變換的性質(zhì)解決問題即可.(2)利用分割法確定四邊形的面積即可.(3)分兩種情形:點在點的上方,點在點的下方,分別求解即可.【詳解】解:(1)點,,又將線段進(jìn)行平移,使點剛好落在軸的負(fù)半軸上,點剛好落在軸的負(fù)半軸上,線段是由線段向左平移4個單位,再向下平移6個單位得到,,.(2).(3)連接.,,的中點坐標(biāo)為在軸上,.,軸,同法可證,,,,同法可證,,,,當(dāng)點在點的下方時,,,,,當(dāng)點在點的上方時,.【點睛】本題考查坐標(biāo)與圖形變化—平移,解題的關(guān)鍵是理解題意,學(xué)會有分割法求四邊形的面積,學(xué)會用分類討論的思想解決問題,屬于中考??碱}型.19.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊【分析】(1)設(shè)每頭牛值x兩銀子,每只羊值y兩銀子,根據(jù)“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)購買a頭牛,b只羊,利用總價=單價×數(shù)量,即可得出關(guān)于a,b的二元一次方程,結(jié)合a,b均為正整數(shù),即可得出各購買方案.【詳解】解:(1)設(shè)每頭牛x兩銀子,每頭羊y兩銀子,根據(jù)題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設(shè))(2)設(shè)該商人購買了a頭牛,b頭羊,根據(jù)題意,得∵a、b均為正整數(shù)∴該方程的解為或或所以共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊.【點睛】本題考查了二元一次方程組的應(yīng)用、數(shù)學(xué)常識以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)找準(zhǔn)等量關(guān)系,正確列出二元一次方程.20.(1);(2)有4種方案:3臺甲種機(jī)器,7臺乙種機(jī)器;2臺甲種機(jī)器,8臺乙種機(jī)器;1臺甲種機(jī)器,9臺乙種機(jī)器;10臺乙種機(jī)器.(3)最省錢的方案是購買2臺甲種機(jī)器,8臺乙種機(jī)器.【分析】(1)根據(jù)購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多12萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器多6萬元這一條件建立一元二次方程組求解即可,(2)設(shè)買了x臺甲種機(jī)器,根據(jù)該公司購買新機(jī)器的資金不超過216萬元,建立一次不等式求解即可,(3)將兩種機(jī)器生產(chǎn)的產(chǎn)量相加,使總產(chǎn)量不低于1890噸,求出x的取值范圍,再分別求出對應(yīng)的成本即可解題.【詳解】(1)解:由題意得,解得,;(2)解:設(shè)買了x臺甲種機(jī)器由題意得:30+18(10-x)≤216解得:x≤3∵x為非負(fù)整數(shù)∴x=0、1、2、3∴有4種方案:3臺甲種機(jī)器,7臺乙種機(jī)器;2臺甲種機(jī)器,8臺乙種機(jī)器;1臺甲種機(jī)器,9臺乙種機(jī)器;10臺乙種機(jī)器.(3)解:由題意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整數(shù)x=2或3當(dāng)x=2時購買費(fèi)用=30×2+18×8=204(元)當(dāng)x=3時購買費(fèi)用=30×3+18×7=216(元)∴最省錢的方案是購買2臺甲種機(jī)器,8臺乙種機(jī)器.【點睛】本題考查了利潤的實際應(yīng)用,二元一次方程租的實際應(yīng)用,一元一次不等式的實際應(yīng)用,難度較大,認(rèn)真審題,找到等量關(guān)系和不等關(guān)系并建立方程組和不等式組是解題關(guān)鍵.21.(1)七(1)班有47人,七(2)班有51人;(2)如果兩個班聯(lián)合起來買票,不可以買單價為9元的票,省錢的方法,可以買101張票,多余的作廢即可【解析】【分析】(1)由兩個班聯(lián)合起來,作為一個團(tuán)體購票,則需付1078元可知:可得票價不是9元,所以兩個班的總?cè)藬?shù)沒有超過100人,設(shè)七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來作為一個團(tuán)體購票,則每張票11元,省錢的方法,可以買101張票,多余的作廢即可?!驹斀狻拷猓海?)∵兩個班聯(lián)合起來,作為一個團(tuán)體購票,則需付1078元有∵可得票價不是9元,所以兩個班的總?cè)藬?shù)沒有超過100人,∴設(shè)七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因為47+51=98<100∴如果兩個班聯(lián)合起來買票,不可以買單價為9元的票∴省錢的方法,可以買101張票,多余的作廢即可??墒。骸军c睛】熟練掌握二元一次方程組的實際問題是解題的關(guān)鍵。22.(1)∠C+∠BAD=90°,理由見解析;(2)9°【分析】(1)先過點B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得到∠ABD=∠C,可得∠C+∠BAD=90°;(2)先過點B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=9°.【詳解】解:(1)如圖2,過點B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C,∴∠C+∠BAD=90°;(2)如圖3,過點B作BG∥DM,BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(1)可得∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,∴∠AFC=5α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②聯(lián)立方程組,解得α=9°,∴∠ABE=9°.【點睛】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時注意方程思想的運(yùn)用.23.(1)有3種租車方案;(2)租5輛大客車,2輛小客車最省錢;(3)租用大客車2輛,小客車7輛;或租10輛小客車.【分析】(1)設(shè)租大客車x輛,根據(jù)題意可列出關(guān)于x的不等式,求得不等式的解集后,再根據(jù)x為整數(shù)即可確定租車方案;(2)依次計算(1)題中的租車方案,比較結(jié)果即可得出答案;(3)設(shè)租大客車x輛,小客車y輛,根據(jù)客車的座位數(shù)滿足的條件可確定x、y滿足的不等式組,進(jìn)一步可確定x、y滿足的方程,再由帶隊的老師數(shù)可確定x、y滿足的不等式,二者結(jié)合即可確定租車方案.【詳解】解:(1)由題意知:本次乘車共270+7=277(人).設(shè)租大客車x輛,則小客車(7-x)輛,根據(jù)題意,得,解得:,因為x為整數(shù),且x≤7,所以x=5,6,7,即有3種租車方案.(2)方案一:當(dāng)x=7,所租7輛皆為大客車時,租車費(fèi)用為:7×400=2800(元),方案二:當(dāng)x=6,所租6輛為大客車,1輛為小客車時,租車費(fèi)用為:6×400+300=2700(元),方案三:當(dāng)x=5,所租5輛為大客車,2輛為小客車時,租車費(fèi)用為:5×400+300×2=2600(元),所以,租5輛大客車,2輛小客車最省錢.(3)乘車總?cè)藬?shù)為270+7+10+4=291(人),因為最后一輛小客車最少20人,則客車空位不能大于10個,所以客車的總座位數(shù)應(yīng)滿足:291≤座位數(shù)≤301.設(shè)租大客車x輛,小客車y輛,則291≤45x+30y≤301,即,∵x、y均為整數(shù),∴3x+2y=20,即.∵每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊,∴2x+y≤11.把代入上式,得,解得.又∵x為整數(shù)且是2的倍數(shù),∴x=2,y=7或x=0,y=10.故租車方案為:租大客車2輛,小客車7輛;或租10輛小客車.【點睛】本題考查了不等式和不等式組的實際應(yīng)用、二元一次方程的整數(shù)解等知識,正確理解題意,列出不等式和不等式組是解題的關(guān)鍵.24.(1);(2);(3)當(dāng)點C在x軸的正半軸上時,;當(dāng)點C在點A和點O之間時,,理由見解析.【分析】(1)由非負(fù)性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質(zhì)可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質(zhì)可得AD∥BC.分兩種情況:當(dāng)點C在x軸的正半軸上時;當(dāng)點C在點A和點O之間時.由平行線的性質(zhì)可求解.【詳解】解:(1)由題意可知解得所以(2)三角形的面積為由得4<≤7所以;(3)作OF//BC,當(dāng)點C在x軸的正半軸上時,如圖1,當(dāng)點C在點A和點O之間時,如圖2,.【點睛】本題是幾何變換綜合題,考查了非負(fù)性,二元一次方程組的解法,一元一次不等式組的解法,平移的性質(zhì)等知識,靈活運(yùn)用這些性質(zhì)進(jìn)行推理計算是本題的關(guān)鍵,要注意分類討論.25.(1)可制作豎式無蓋箱子30個,可制作橫式無蓋箱子60個;(2)最多可以制作豎式箱子50個;(3)最多可以制作豎式箱子45個【分析】(1)根據(jù)題意可以列出相應(yīng)的二元一次方程組,再解方程組即可解答本題;(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以求得最多可以制作豎式箱子多少個;(3)根據(jù)題意可以列出相應(yīng)的二元一次方程,再根據(jù)a為整數(shù)和a≥10,即可解答本題.【詳解】解:(1)設(shè)可制作豎式無蓋箱子m個,可制作橫式無蓋箱子n個,依題意有,解得,故可制作豎式無蓋箱子30個,可制作橫式無蓋箱子60個;(2)由題意可得,1個豎式箱子需要1個A型和4個B型,1個橫式箱子需要2個A型和3個B型,設(shè)豎式箱子x個,則橫式箱子(100-x)個,(20+4×60)x+(2×20+3×60)(100-x)≤24000,解得x≤50,故x的最大值是50,答:最多可以制作豎式箱子50個;(3)C型可以看成三列,每一列可以做成3個A型或1個B型,65個C型就有65×3=195列,∵材料恰好用完,∴最后A型的數(shù)量一定是3的倍數(shù),設(shè)豎式a個,橫式b個,∵1個豎式箱子需要1個A型和4個B型,1個橫式箱子需要2個A型和3個B型,1個B型相當(dāng)于3個A型,∴(1+4×3)a+(2+3×3)b=195×3,∴13a+11b=585,∵a、b均為整數(shù),a≥10,∴或或或,故最多可以制作豎式箱子45個.【點睛】本題考查一元一次不等式的應(yīng)用、二元一次方程(組)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用方程和不等式的性質(zhì)解答.26.當(dāng)x小于5時,方案二省錢;當(dāng)x=5時,兩種方案費(fèi)用相同;當(dāng)x大于5且不大于12時時,方案一省錢【分析】先根據(jù)題意列出方案一的費(fèi)用:起步價+超過3km的km數(shù)×1.6元+回程的空駛費(fèi)+乘公交的費(fèi)用,再求出方案二的費(fèi)用:起步價+超過3km的km數(shù)×1.6元+返回時的費(fèi)用1.6x+1.6元的等候費(fèi),最后分三種情況比較兩個式子的大小.【詳解】方案一的費(fèi)用:7+(x-3)×1.6+0.8(x-3)+4×2=7+1.6x-4.8+0.8x-2.4+8=7.8+2.4x,方案二的費(fèi)用:7+(x-3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x,①費(fèi)用相同時x的值7.8+2.4x=3.8+3.2x,解得x=5,所以當(dāng)x=5km時費(fèi)用相同;②方案一費(fèi)用高時x的值7.8+2.4x>3.8+3.2x,解得x<5,所以當(dāng)x<5km方案二省錢;③方案二費(fèi)用高時x的值7.8+2.4x<3.8+3.2x,解得x>5,所以當(dāng)x>5km方案一省錢.【點睛】此題考查了應(yīng)用類問題,解答本題的關(guān)鍵是根據(jù)題目所示的收費(fèi)標(biāo)準(zhǔn),列出x的關(guān)系式,再比較.27.(1)-2.5,2;(2)k=-8或-6或-4;(3)2,1,-1,-2,【分析】(1)根據(jù)連動數(shù)的定義即可確定;(2)先表示出x,y的值,再根據(jù)連動數(shù)的范圍求解即可;(3)求得不等式的解,根據(jù)連動整數(shù)的概念得到關(guān)于a的不等式,解不等式即可求得.【詳解】解:(1)∵點P是線段AB上一動點,點A、點B對應(yīng)的數(shù)分別是-1,1,又∵|PQ|=2,∴連動數(shù)Q的范圍為:或,∴連動數(shù)有-2.5,2;(2),②×3-①×4得:,①×3-②×2得:,要使x,y均為連動數(shù),或,解得或或,解得或∴k=-8或-6或-4;(3)解得:,∵解集中恰好有4個解是連動整數(shù),∴四個連動整數(shù)解為-2,-1,1,2,∴,∴∴a的取值范圍是.【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公樓外墻廣告位協(xié)議2025
- 項目融資的核心特征
- 2025年政府專職消防員入職考試復(fù)習(xí)參考題庫及答案(共70題)
- 2025年醫(yī)院三基知識考試試題庫及答案(共170題)
- 物理中考開放試題及答案
- 2025年陜西西安高考試題及答案
- 經(jīng)動脈化療栓塞聯(lián)合系統(tǒng)靶免治療中晚期肝細(xì)胞癌的研究進(jìn)展2026
- 2025年期末試卷講解測試卷及答案
- 教玩具購銷合同范本
- 公墓清理垃圾合同范本
- 支原體抗體診斷培訓(xùn)
- 三通、大小頭面積計算公式
- 軟件無線電原理與應(yīng)用(第3版)-習(xí)題及答案匯總 第1-9章 虛擬人-軟件無線電的新發(fā)展 認(rèn)知無線電
- 中級會計實務(wù)-存貨
- 機(jī)械電氣設(shè)備管理制度
- 簡單酒水購銷合同
- GB/T 41933-2022塑料拉-拉疲勞裂紋擴(kuò)展的測定線彈性斷裂力學(xué)(LEFM)法
- 高中語文 選修中冊 第四課時 展示強(qiáng)大思想力量 邏輯思維在著作中提升-《改造我們的學(xué)習(xí)》《人的正確思想是從哪里來的》
- 大學(xué)化學(xué)試題庫
- GCB發(fā)電機(jī)出口斷路器教育課件
- 柑桔周年管理工作歷第二版課件
評論
0/150
提交評論