考點解析-河南鄭州桐柏一中7年級數(shù)學下冊第五章生活中的軸對稱定向訓練試題(含解析)_第1頁
考點解析-河南鄭州桐柏一中7年級數(shù)學下冊第五章生活中的軸對稱定向訓練試題(含解析)_第2頁
考點解析-河南鄭州桐柏一中7年級數(shù)學下冊第五章生活中的軸對稱定向訓練試題(含解析)_第3頁
考點解析-河南鄭州桐柏一中7年級數(shù)學下冊第五章生活中的軸對稱定向訓練試題(含解析)_第4頁
考點解析-河南鄭州桐柏一中7年級數(shù)學下冊第五章生活中的軸對稱定向訓練試題(含解析)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南鄭州桐柏一中7年級數(shù)學下冊第五章生活中的軸對稱定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列圖形是軸對稱圖形的是()A. B. C. D.2、如圖,在的正方形網(wǎng)格中,格線的交點稱為格點,以格點為頂點的三角形稱為格點三角形,圖中的為格點三角形,在圖中與成軸對稱的格點三角形可以畫出()A.6個 B.5個 C.4個 D.3個3、下列圖案中,屬于軸對稱圖形的是()A. B. C. D.4、如圖,AD,BE,CF依次是ABC的高、中線和角平分線,下列表達式中錯誤的是()A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF5、下列垃圾分類的標識中,是軸對稱圖形的是()A.①② B.③④ C.①③ D.②④6、在一些美術字中,有的漢字是軸對稱圖形.下面?zhèn)€漢字中,可以看作是軸對稱圖形的是()A. B. C. D.7、如圖,下列圖形中,軸對稱圖形的個數(shù)是()A.1個 B.2個 C.3個 D.4個8、如圖.點D,E分別在△ABC的邊BC,AB上,連接AD、DE,將△ABC沿直線DE折疊后,點B與點A重合,已知AC=6cm,△ADC的周長為14cm,則線段BC的長為()A.6cm B.8cm C.12cm D.20cm9、如圖,直線、相交于點,為這兩條直線外一點,連接.點關于直線、的對稱點分別是點、.若,則點、之間的距離可能是()A. B. C. D.10、放風箏是我國人民非常喜愛的一項戶外娛樂活動,下列風箏剪紙作品中,不是軸對稱圖形的是()A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在中,AF是中線,AE是角平分線,AD是高,,,,,則根據(jù)圖形填空:(1)_________,_________;(2)_________,_________.2、如圖將一條兩邊互相平行的紙帶按如圖折疊,若∠EFG+∠EGD=150°,則∠EGD=_____3、將一張長方形紙片按如圖所示的方式折疊,BC,BD為折痕,則∠CBD大小為_____度.4、如圖,四邊形ABCD中,AD∥BC,直線l是它的對稱軸,∠B=53°,則∠D的大小為______°.5、如圖,把四邊形ABCD紙條沿MN對折,若AD∥BC,∠α=52°,則∠AMN=_______.6、如圖,在△ABC中,點D,E分別在邊AB,BC上,點A與點E關于直線CD對稱.若AB=8cm,AC=10cm,BC=14cm,則△DBE的周長為___.7、下列圖形中,一定是軸對稱圖形的有______________(填序號).(1)線段;(2)三角形;(3)圓;(4)正方形;(5)梯形8、在線段?角?圓?長方形?梯形?三角形?等邊三角形中,是軸對稱圖形的有__________個.9、如圖,在矩形中,,,點、分別在、上,將矩形沿折疊,使點、分別落在矩形外部的點、處,則整個陰影部分圖形的周長為______.10、如圖,在△ABC紙片中,AB=9cm,BC=5cm,AC=7cm,沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,則△ADE的周長為是_____cm.三、解答題(6小題,每小題10分,共計60分)1、如圖,小球起始時位于(3,0)處,沿所示的方向擊球,小球運動的軌跡如圖所示,用坐標描述這個運動,找出小球運動的軌跡上幾個關于直線l對稱的點,如果小球起始時位于(1,0)處,仍按原來方向擊球,請你畫出這時小球運動的軌跡.2、如圖,平面直角坐標系中,△ABC的頂點A(0,-2),B(2,-4),C(4,-1);(1)畫出與△ABC關于軸對稱的圖形△A1B1C1,并寫出點B1的坐標;(2)四邊形AA1C1C的面積為___________3、已知,如圖,等腰直角△ABC中,∠ACB=90°,CA=CB,過點C的直線CH和AC的夾角∠ACH=α,請按要求完成下列各題:(1)請按要求作圖:作出點A關于直線CH的軸對稱點D,連接AD、BD、CD,其中BD交直線CH于點E,連接AE;(2)請問∠ADB的大小是否會隨著α的改變而改變?如果改變,請用含α的式子表示∠ADB;如果不變,請求出∠ADB的大小.(3)請證明△ACE的面積和△BCE的面積滿足:.4、如圖,P為△ABC的外角平分線上任一點.求證:PB+PC≥AB+AC.5、(閱讀與理解)折紙,常常能為證明一個命題提供思路和方法,例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?(分析)把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點C’處,即AC=AC’,據(jù)以上操作,易證明△ACD≌△AC’D,所以∠AC’D=∠C,又因為∠AC’D>∠B,所以∠C>∠B.(感悟與應用)(1)如圖(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數(shù)量關系,并說明理由;(2)如圖(2),在四邊形ABCD中,AC平分∠DAB,CD=CB.求證:∠B+∠D=180°.6、已知在紙面上畫有一數(shù)軸,如圖所示.(1)折疊紙面,使表示1的點與表示-1的點重合,則表示-3的點與表示的點重合;(直接寫出答案)(2)折疊紙面,使表示-1的點與表示3的點重合,則表示100的點與表示數(shù)的點重合;(直接寫出答案)(3)已知在數(shù)軸上點A表示的數(shù)是a,將點A移動10個單位得到點B,此時點B表示的數(shù)和a是互為相反數(shù),求a的值.-參考答案-一、單選題1、C【分析】根據(jù)如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析即可.【詳解】解:選項A、B、D不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,選項C能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,故選:D.【點睛】此題主要考查了軸對稱圖形,關鍵是正確確定對稱軸位置.2、A【分析】直接利用軸對稱圖形的性質(zhì)分別得出符合題意的答案.【詳解】解:符合題意的三角形如圖所示:分三類對稱軸為橫向:對稱軸為縱向:對稱軸為斜向:滿足要求的圖形有6個.故選:A.【點睛】本題主要考查利用軸對稱來設計軸對稱圖形,關鍵是要掌握軸對稱的性質(zhì)和軸對稱圖形的含義.3、B【詳解】解:A、不是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,故本選項符合題意;C、不是軸對稱圖形,故本選項不符合題意;D、不是軸對稱圖形,故本選項不符合題意;故選:B【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.4、C【分析】根據(jù)三角形的高、中線和角平分線的定義(1)三角形的角平分線定義:三角形的一個角的平分線與這個角的對邊相交,連接這個角的頂點和交點的線段叫做三角形的角平分線;(2)三角形的中線定義:在三角形中,連接一個頂點和它所對邊的中點的連線段叫做三角形的中線;(3)三角形的高定義:從三角形一個頂點向它的對邊(或?qū)吽诘闹本€)作垂線,頂點和垂足間的線段叫做三角形的高線,簡稱為高.求解即可.【詳解】解:A、BE是△ABC的中線,所以AE=CE,故本表達式正確;B、AD是△ABC的高,所以∠ADC=90,故本表達式正確;C、由三角形的高、中線和角平分線的定義無法得出∠CAD=∠CBE,故本表達式錯誤;D、CF是△ABC的角平分線,所以∠ACB=2∠ACF,故本表達式正確.故選:C.【點睛】本題考查了三角形的高、中線和角平分線的定義,是基礎題,熟記定義是解題的關鍵.5、B【詳解】解:圖③和④是軸對稱圖形,故選:B.【點睛】本題考查了軸對稱圖形,熟記軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.6、A【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.利用軸對稱圖形的定義進行判斷即可.【詳解】解:A、是軸對稱圖形,故此選項符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、不是軸對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:A【點睛】此題主要考查了軸對稱圖形的定義,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.7、B【分析】根據(jù)軸對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形進行判斷即可.【詳解】解:第一個圖形不是軸對稱圖形;第二個圖形是軸對稱圖形;第三個圖形是軸對稱圖形;第四個圖形不是軸對稱圖形;∴軸對稱圖形有2個,故選B.【點睛】本題主要考查了軸對稱圖形,解題的關鍵在于能夠熟練掌握軸對稱圖形的定義.8、B【分析】由折疊的性質(zhì)得出BD=AD,由題意得出AD+DC=BD+DC=BC即可得出答案.【詳解】解:∵△ABC沿直線DE折疊后,點B與點A重合,∴BD=AD,∵AC=6cm,△ADC的周長為14cm,∴AD+DC=14-6=8cm,∴BD+DC=BC=8cm,故選:B【點睛】此題主要考查了翻折變換的性質(zhì),根據(jù)題意得出AD=BD是解題關鍵.9、B【分析】由對稱得OP1=OP=3.5,OP=OP2=3.5,再根據(jù)三角形任意兩邊之和大于第三邊,即可得出結果.【詳解】連接,,,如圖:點關于直線,的對稱點分別是點,,,,,,故選:.【點睛】本題考查線軸對稱的性質(zhì)以及三角形三邊關系,解本題的關鍵熟練掌握對稱性和三角形邊長的關系.10、B【分析】根據(jù)軸對稱圖形的概念求解.在平面內(nèi),如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.【詳解】解:A、是軸對稱圖形,故此選項不合題意;B、不是軸對稱圖形,故此選項符合題意;C、是軸對稱圖形,故此選項不合題意;D、是軸對稱圖形,故此選項不合題意.故選:B.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.二、填空題1、6.54545【分析】(1)根據(jù)三角形高和中線的定義進行求解即可得到答案;(2)根據(jù)三角形角平分線的定義進行求解即可【詳解】解:(1)在中,AF是中線,∴,∵,,,,AD是高,∴,∴;(2)∵,AE是角平分線,∴,故答案為:6.5,;45,45.【點睛】本題主要考查了三角形高,角平分線和中線的定義,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、【分析】先根據(jù)平行線的性質(zhì)得到,結合已知∠EFG+∠EGD=150°,解得∠EGD=,再根據(jù)折疊的性質(zhì)解得,結合兩直線平行,同旁內(nèi)角互補得到,據(jù)此整理得,進而解題.【詳解】解:∠EFG+∠EGD=150°,∠EGD=折疊故答案為:.【點睛】本題考查折疊的性質(zhì)、平行線的性質(zhì)等知識,兩直線平行,同旁內(nèi)角互補,掌握相關知識是解題關鍵.3、90【分析】根據(jù)折疊的性質(zhì)得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根據(jù)平角的定義有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得∠A′BC+∠E′BD=180°×=90°,則∠CBD=90°.【詳解】因為一張長方形紙片沿BC、BD折疊,所以∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,所以∠A′BC+∠E′BD=180°×=90°,即∠CBD=90°.故答案為:90【點睛】本題考查了折疊的性質(zhì):折疊前后兩圖形全等,即對應角相等,對應相等相等.也考查了平角的定義.4、127【分析】根據(jù)軸對稱性質(zhì)得出∠C=∠B=53°,根據(jù)平行線性質(zhì)得出∠C+∠D=180°即可.【詳解】解:直線l是四邊形ABCD的對稱軸,∠B=53°,∴∠C=∠B=53°,∵AD∥BC,∴∠C+∠D=180°,∴∠D=180°-53°=127°.故答案為:127.【點睛】本題考查軸對稱性質(zhì),平行線性質(zhì),求一個角的的補角,掌握軸對稱性質(zhì),平行線性質(zhì),求一個角的的補角.5、【分析】如圖,設點對應點為,則根據(jù)折疊的性質(zhì)求得,根據(jù)平行的性質(zhì)可得,進而求得.【詳解】如圖,設點對應點為,根據(jù)折疊的性質(zhì)可得,,∠α=52°,,,,.故答案為:.【點睛】本題考查了折疊的性質(zhì),平行線的性質(zhì),掌握以上性質(zhì)是解題的關鍵.6、【分析】根據(jù)對稱的性質(zhì)可得,,進而可得的長,根據(jù)三角形的周長公式計算即可求得△DBE的周長【詳解】解:∵點A與點E關于直線CD對稱,∴,BC=14△DBE的周長為故答案為:【點睛】本題考查了軸對稱的性質(zhì),理解對稱的性質(zhì)是解題的關鍵.7、(1)(3)(4)【分析】如果一個圖形沿著一條直線對折后,直線兩旁的部分完全重合,這樣的圖形叫做軸對稱圖形,依據(jù)定義即可作出判斷.【詳解】解:線段的對稱軸是其垂直平分線,圓的對稱軸是其直徑所在的直線,正方形的對稱軸是其對角線所在直線和對邊中點的連線,(1)(3)(4)是軸對稱圖形,只有等腰三角形和等腰梯形是軸對稱圖形,(2)(5)不一定是軸對稱圖形,故一定是軸對稱圖形的有(1)(3)(4).故答案為:(1)(3)(4).【點睛】本題主要考查了軸對稱圖形的定義,解題的關鍵是正確確定軸對稱圖形的對稱軸.8、5【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據(jù)此作答.【詳解】解:線段的垂直平分線所在的直線是對稱軸,是軸對稱圖形,符合題意;角的平分線所在直線就是對稱軸,是軸對稱圖形,符合題意;圓有無數(shù)條對稱軸,是軸對稱圖形,符合題意;長方形有二條對稱軸,是軸對稱圖形,符合題意;梯形不一定是軸對稱圖形,不符合題意;三角形不一定是軸對稱圖形,不符合題意;等邊三角形三條中線所在的直線是對稱軸,是軸對稱圖形,符合題意;故軸對稱圖形共有5個.故答案為:5.【點睛】本題考查了軸對稱的概念.軸對稱的關鍵是尋找對稱軸,圖象沿某一直線折疊后可以重合.9、32【分析】根據(jù)折疊的性質(zhì),得FD=FD1,C1D1=CD,C1E=CE,則陰影部分的周長即為矩形的周長.【詳解】解:根據(jù)折疊的性質(zhì),得FD=FD1,C1D1=CD,C1E=CE,則陰影部分的周長=矩形的周長=2×(12+4)=32.故答案為:32.【點睛】本題主要考查了翻折變換,關鍵是要能夠根據(jù)折疊的性質(zhì)得到對應的線段相等,從而求得陰影部分的周長.10、11【分析】根據(jù)翻折的性質(zhì)和題目中的條件,可以得到AD+DE的長和AE的長,從而可以得到△ADE的周長.【詳解】解:由題意可得,BC=BE,CD=DE,∵AB=9cm,BC=5cm,AC=7cm,∴AD+DE=AD+CD=AC=7cm,AE=AB﹣BE=AB﹣BC=9﹣5=4cm,∴AD+DE+AE=11cm,即△AED的周長為11cm,故答案為:11.【點睛】此題考查了折疊的性質(zhì),解題的關鍵是能夠利用折疊的有關性質(zhì)進行求解.三、解答題1、見解析【分析】根據(jù)題意,根據(jù)對稱性畫出圖形即可解決問題.【詳解】解:①小球運動軌跡是(3,0)→(0,3)→(1,4)→(5,0)→(8,3)→(7,4)→(3,0);小球運動的軌跡如圖所示,圖中點A、B,點C、D,點E、F關于直線l對稱.②如果小球起始時位于(1,0)處,仍按原來方向擊球,小球運動的軌跡如圖所示,【點睛】本題考查了利用軸對稱設計圖案、軌跡等知識,解題的關鍵是利用對稱性解決問題,屬于中考??碱}型.2、(1)見解析;(2,4);(2)12【分析】(1)根據(jù)關于x軸對稱的點的坐標特征寫出頂點A1,B1,C1的坐標,然后連線即可;(2)作出圖象可得四邊形為等腰梯形,根據(jù)梯形面積公式求解即可.【詳解】解:(1)先找出對稱點A1(0,2),B1(2,4),C1(4,1),依次連接,如圖,△A1B1C1為所作;∴B1(2,4);(2)如圖所示,四邊形為等腰梯形,,,,∴,故答案為:12.【點睛】本題考查了作軸對稱圖形:先找對稱點然后依次連接即可,結合圖象求解是解題關鍵.3、(1)見解析;(2)大小不變,為定值45°;(3)見解析.【分析】(1)根據(jù)題意做出點A關于直線CH的軸對稱點D,連接AD、BD、CD即可求解;(2)根據(jù)題意證明,然后表示出的度數(shù),然后根據(jù)周角表示出的度數(shù),根據(jù)表示出的度數(shù),即可求出∠ADB的度數(shù);(3)首先根據(jù)題意證明,得出,然后根據(jù)三角形面積的求法表示出即可證明.【詳解】解:(1)如圖所示,(2)大小不變,為定值45°.∵A關于直線CH的軸對稱點D,∴CA=CD,AD⊥CH,如圖所示,AD與CH交于點M,在和中,,∴,∴,,∴,∴,∴,又∵,,∴,∴,∴,故大小不變,為定值45°;(3)如圖所示,過點B作BN⊥CH于點N,,,由(2)可知,,又∵,∴,∴為等腰直角三角形,∴,∵,∴,又∵,∴,在和中,∴,∴,即,∴.故.【點睛】此題考查了全等三角形的性質(zhì)和判定,三角形面積,解題的關鍵是根據(jù)題意表示出和的度數(shù).4、見解析【分析】分兩種情況討論:①當點P與點A不重合時,在BA延長線上取一點D,使AD=AC,連接PD.可證得△PAD≌△PAC,再利用三角形的三邊關系,可得PB+PC>AB+AC.當點P與點A重合時,可得PB+PC=AB+AC,即可求證.【詳解】證明:①如圖,當點P與點A不重合時,在BA延長線上取一點D,使AD=AC,連接PD.∵P為△ABC的外角平分線上一點,∴∠1=∠2,∵在△PAD和△PAC中∴△PAD≌△PAC(SAS),∴PD=PC,在△PBD中,PB+PD>BD,BD=AB+AD,∴PB+PC>AB+AC.②當點P與點A重合時,PB+PC=AB+AC.綜上,PB+PC≥AB+AC.【點睛】本題主要考查了全等三角形的判定和性質(zhì),三角形的三邊關系,能利用分類討論思想解答是解題的關鍵.5、(1)AC+AD=BC;(2)證明見解答過程;【分析】(1)把AC沿∠ACB的角平分線CD翻折,點A落在BC上的點A′處,連接A′D,根據(jù)直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論