強(qiáng)化訓(xùn)練-重慶市彭水一中7年級數(shù)學(xué)下冊第四章三角形專項(xiàng)測試試題(解析卷)_第1頁
強(qiáng)化訓(xùn)練-重慶市彭水一中7年級數(shù)學(xué)下冊第四章三角形專項(xiàng)測試試題(解析卷)_第2頁
強(qiáng)化訓(xùn)練-重慶市彭水一中7年級數(shù)學(xué)下冊第四章三角形專項(xiàng)測試試題(解析卷)_第3頁
強(qiáng)化訓(xùn)練-重慶市彭水一中7年級數(shù)學(xué)下冊第四章三角形專項(xiàng)測試試題(解析卷)_第4頁
強(qiáng)化訓(xùn)練-重慶市彭水一中7年級數(shù)學(xué)下冊第四章三角形專項(xiàng)測試試題(解析卷)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

重慶市彭水一中7年級數(shù)學(xué)下冊第四章三角形專項(xiàng)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°2、如圖,點(diǎn)A在DE上,點(diǎn)F在AB上,△ABC≌△EDC,若∠ACE=50°,則∠DAB=()A.40° B.45° C.50° D.55°3、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N4、如圖,ABC≌DEF,點(diǎn)B、E、C、F在同一直線上,若BC=7,EC=4,則CF的長是()A.2 B.3 C.4 D.75、下列三角形與下圖全等的三角形是()A. B.C. D.6、如圖,,,,則下列結(jié)論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④7、如圖,直線EF經(jīng)過AC的中點(diǎn)O,交AB于點(diǎn)E,交CD于點(diǎn)F,下列不能使△AOE≌△COF的條件為()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF8、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結(jié)論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE9、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個(gè)條件不可以是()A. B. C. D.10、以下列各組線段為邊,能組成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,點(diǎn)E,F(xiàn)分別為線段BC,DB上的動(dòng)點(diǎn),BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.2、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號)3、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿折線BC﹣CA以每秒3個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).分別過P、Q兩點(diǎn)作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時(shí),CQ的長為______.4、如圖,在△ABC中,點(diǎn)D,E,F(xiàn)分別為BC,AD,CE的中點(diǎn),且S△BEF=2cm2,則S△ABC=__________.5、如圖,于點(diǎn)D,于點(diǎn)E,BD,CE交于點(diǎn)F,請你添加一個(gè)條件:______(只添加一個(gè)即可),使得≌6、我們將一副三角尺按如圖所示的位置擺放,則_______°.7、已知,如圖,AB=AC,AD=AE,BE與CD相交于點(diǎn)P,則下列結(jié)論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對全等三角形;正確的是_____(請?zhí)顚懶蛱枺?、在中,,則的取值范圍是_______.9、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點(diǎn)P,點(diǎn)E、F分別在邊BC、AC上,且都不與點(diǎn)C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時(shí),則△CEF的周長為_____.10、如圖,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,連接AC、BD交于點(diǎn)M,連接OM.下列結(jié)論:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正確的結(jié)論是_____.(填序號)三、解答題(6小題,每小題10分,共計(jì)60分)1、探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且∠ADE=∠AED,連接DE.(1)當(dāng)∠BAD=60°時(shí),求∠CDE的度數(shù);(2)當(dāng)點(diǎn)D在BC(點(diǎn)B、C除外)邊上運(yùn)動(dòng)時(shí),試猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關(guān)系.2、如圖,于于F,若,(1)求證:平分;(2)已知,求的長.3、如圖,已知點(diǎn)A,E,F(xiàn),C在同一條直線上,AE=CF,AB∥CD,∠B=∠D.請問線段AB與CD相等嗎?說明理由.4、如圖,點(diǎn)B,F(xiàn),C,E在一條直線上,AB=DE,AC=DF,BF=EC.AB和DE的位置關(guān)系是什么?請說明你的理由.5、在邊長為10厘米的等邊三角形△ABC中,如果點(diǎn)M,N都以3厘米/秒的速度勻速同時(shí)出發(fā).(1)若點(diǎn)M在線段AC上由A向C運(yùn)動(dòng),點(diǎn)N在線段BC上由C向B運(yùn)動(dòng).①如圖①,當(dāng)BD=6,且點(diǎn)M,N在線段上移動(dòng)了2s,此時(shí)△AMD和△BND是否全等,請說明理由.②求兩點(diǎn)從開始運(yùn)動(dòng)經(jīng)過幾秒后,△CMN是直角三角形.(2)若點(diǎn)M在線段AC上由A向點(diǎn)C方向運(yùn)動(dòng),點(diǎn)N在線段CB上由C向點(diǎn)B方向運(yùn)動(dòng),運(yùn)動(dòng)的過程中,連接直線AN,BM,交點(diǎn)為E,探究所成夾角∠BEN的變化情況,結(jié)合計(jì)算加以說明.6、如圖1,AM為△ABC的BC邊的中線,點(diǎn)P為AM上一點(diǎn),連接PB.(1)若P為線段AM的中點(diǎn).①設(shè)△ABP的面積為S1,△ABC的面積為S,求的值;②已知AB=5,AC=3,設(shè)AP=x,求x的取值范圍.(2)如圖2,若AC=BP,求證:∠BPM=∠CAM.-參考答案-一、單選題1、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.2、C【分析】首先根據(jù)△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性質(zhì)求解即可.【詳解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故選:C.【點(diǎn)睛】此題考查了三角形全等的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的性質(zhì),三角形外角的性質(zhì).3、A【分析】根據(jù)兩個(gè)三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗(yàn)證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項(xiàng)符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項(xiàng)不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項(xiàng)不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題重點(diǎn)考查了三角形全等的判定定理,兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.4、B【分析】根據(jù)全等三角形的性質(zhì)可得,根據(jù)即可求得答案.【詳解】解:ABC≌DEF,點(diǎn)B、E、C、F在同一直線上,BC=7,EC=4,故選B【點(diǎn)睛】本題考查了全等三角形的性質(zhì),掌握全等三角形的性質(zhì)是解題的關(guān)鍵.5、C【分析】根據(jù)已知的三角形求第三個(gè)內(nèi)角的度數(shù),由全等三角形的判定定理即可得出答案.【詳解】由題可知,第三個(gè)內(nèi)角的度數(shù)為,A.只有兩邊,故不能判斷三角形全等,故此選項(xiàng)錯(cuò)誤;B.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項(xiàng)錯(cuò)誤;C.兩邊相等且夾角相等,故能判斷兩三角形全等,故此選項(xiàng)正確;D.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查全等三角形的判定,掌握全等三角形的判定定理是解題的關(guān)鍵.6、B【分析】根據(jù)全等三角形的性質(zhì)直接判定①②,則有,然后根據(jù)角的和差關(guān)系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯(cuò)誤,④正確,綜上所述:正確的有①②④;故選B.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.7、C【分析】根據(jù)全等三角形的判定逐項(xiàng)判斷即可.【詳解】解:∵直線EF經(jīng)過AC的中點(diǎn)O,∴OA=OC,A、∵OA=OC,∠A=∠C,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項(xiàng)不符合題意;B、∵AB∥CD,∴∠A=∠C,又∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項(xiàng)不符合題意;C、由OA=OC,AE=CF,∠AOE=∠COF,不能證明△AOE≌△COF,符合題意;D、∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),此選項(xiàng)不符合題意,故選:C.【點(diǎn)睛】本題考查全等三角形的判定、對頂角相等,熟練掌握全等三角形的判定條件是解答的關(guān)鍵.8、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進(jìn)而逐一進(jìn)行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項(xiàng)錯(cuò)誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項(xiàng)錯(cuò)誤;D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).9、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項(xiàng)不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項(xiàng)符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項(xiàng)不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關(guān)鍵.10、C【分析】根據(jù)三角形三邊關(guān)系求解即可.【詳解】解:A、∵,∴3cm,3cm,6cm不能組成三角形,故選項(xiàng)錯(cuò)誤,不符合題意;B、∵,∴2cm,5cm,8cm不能組成三角形,故選項(xiàng)錯(cuò)誤,不符合題意;C、∵,∴25cm,24cm,7cm能組成三角形,故選項(xiàng)正確,符合題意;D、∵,∴1cm,2cm,3cm不能組成三角形,故選項(xiàng)錯(cuò)誤,不符合題意.故選:C.【點(diǎn)睛】此題考查了三角形三邊關(guān)系,解題的關(guān)鍵是熟練掌握三角形三邊關(guān)系.三角形兩邊之和大于第三邊,兩邊之差小于第三邊.二、填空題1、①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn)【分析】按照①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn)的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);如圖,點(diǎn)即為所求.故答案為:①連接,作;②以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn);③連接交于點(diǎn);④以點(diǎn)為圓心、長為半徑畫弧,交于點(diǎn).【點(diǎn)睛】本題考查了作一個(gè)角等于已知角、兩點(diǎn)之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識點(diǎn),熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.2、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯(cuò)誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯(cuò)誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點(diǎn)睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點(diǎn)的運(yùn)用.要求學(xué)生具備運(yùn)用這些定理進(jìn)行推理的能力.3、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時(shí);(2)當(dāng)P在AC上,Q在AC上時(shí),即P、Q重合時(shí);【詳解】解:當(dāng)P在AC上,Q在BC上時(shí),∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時(shí)是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時(shí),即P、Q重合時(shí),則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時(shí),滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.4、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點(diǎn)為AD的中點(diǎn)得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點(diǎn)為CE的中點(diǎn),∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點(diǎn)為BC的中點(diǎn),∴S△BDE=S△BCE=2cm2,∵E點(diǎn)為AD的中點(diǎn),∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點(diǎn)睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關(guān)鍵.5、(答案不唯一)【分析】由題意依據(jù)全等三角形的判定條件進(jìn)行分析即可得出答案.【詳解】解:∵于點(diǎn)D,于點(diǎn)E,∴,∵,∴當(dāng)時(shí),≌(AAS).故答案為:.【點(diǎn)睛】本題考查三角形全等的判定方法;判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時(shí)注意:AAA、SSA不能判定兩個(gè)三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解答本題的關(guān)鍵.6、45【分析】利用三角形的外角性質(zhì)分別求得∠α和∠β的值,代入求解即可.【詳解】解:根據(jù)題意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α?∠β=120°-75°=45°,故答案為:45.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解答本題的關(guān)鍵是明確題意,找到三角板中隱含的角的度數(shù),利用數(shù)形結(jié)合的思想解答.7、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個(gè)數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當(dāng)AP=PB時(shí),∠PAB=∠B,當(dāng)AP≠PB時(shí),∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對全等三角形,故④正確故答案為:①②④【點(diǎn)睛】本題考查三角形全等判定與性質(zhì),掌握全等三角形的判定方法與性質(zhì)是解題關(guān)鍵.8、【分析】由構(gòu)成三角形的條件計(jì)算即可.【詳解】∵中∴∴.故答案為:.【點(diǎn)睛】本題考查了由構(gòu)成三角形的條件判斷第三條邊的取值范圍,在一個(gè)三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.9、4【分析】根據(jù)題意過點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ,進(jìn)而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點(diǎn)睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問.10、①②④【分析】由證明得出,,①正確;由全等三角形的性質(zhì)得出,由三角形的外角性質(zhì)得:,得出,②正確;作于,于,如圖所示:則,利用全等三角形對應(yīng)邊上的高相等,得出,由角平分線的判定方法得出平分,④正確;假設(shè)平分,則,由全等三角形的判定定理可得,得,而,所以,而,故③錯(cuò)誤;即可得出結(jié)論.【詳解】解:,,即,在和中,,,,,故①正確;,由三角形的外角性質(zhì)得:,,故②正確;作于,于,如圖所示,則,,,平分,故④正確;假設(shè)平分,則,在與中,,,,,,而,故③錯(cuò)誤;所以其中正確的結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識;證明三角形全等是解題的關(guān)鍵.三、解答題1、(1)30°;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE.【分析】(1)根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計(jì)算即可;(2)設(shè)∠BAD=x,根據(jù)三角形的外角的性質(zhì)求出∠ADC,結(jié)合圖形計(jì)算即可;(3)設(shè)∠BAD=x,仿照(2)的解法計(jì)算.【詳解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:設(shè)∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=,∴∠CDE=45°+x﹣=x,∴∠BAD=2∠CDE;(3)設(shè)∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+x,∴∠CDE=∠B+x﹣(∠C+x)=x,∴∠BAD=2∠CDE.【點(diǎn)睛】本題考查了三角形內(nèi)角和和外角的性質(zhì),解題關(guān)鍵是熟練掌握三角形內(nèi)角和和外角性質(zhì),通過設(shè)參數(shù)計(jì)算,發(fā)現(xiàn)角之間的關(guān)系2、(1)證明見解析;(2)6【分析】(1)由題所給條件可得,即得ED=DF,則可得,則,故平分.(2)由(1)問所得條件,得AF=AE=8,則AB=8-2=6.【詳解】(1)∵于于F,∴(HL)∴ED=DF∵于于F,AD=AD∴(HL)∴故平分.(2)∵BE=CF∴AF=AC-BE=10-2=8∴AE=AF=8∴AB=AE-BE=8-2=6.【點(diǎn)睛】本題考查了直角三角形全等的判定,所應(yīng)用的定理為斜邊、直角邊定理:斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等(簡寫成HL).3、AB=CD,理由見解析.【分析】由平行線的性質(zhì)得出∠A=∠C,證明△ABF≌△CDE(AAS),由全等三角形的性質(zhì)得出AB=CD.【詳解】解:AB=CD.理由如下:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴AB=CD.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練運(yùn)用全等三角形的判定定理證明三角形全等.4、AB∥DE,理由見解析.【分析】先求出BC=EF,再根據(jù)“邊邊邊”證明△ABC與△DEF全等,根據(jù)全等三角形對應(yīng)角相等可得∠B=∠E,然后根據(jù)內(nèi)錯(cuò)角相等,兩直線平行即可得證.【詳解】解:∵BF=EC,∴BF+FC=EC+CF,即BC=EF,在△ABC與△DEF中,,∴△ABC≌△DEF(SSS),∴∠B=∠E(全等三角形對應(yīng)角相等),∴AB∥DE.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),平行線的判定,求出BC=EF,得到三角形全等是解題的關(guān)鍵.5、(1)①證明見解析;②經(jīng)過或秒后,△CMN是直角三角形;(2)∠BEN=60°,證明見解析【分析】(1)①根據(jù)題意得出AM=BD,AD=BN,根據(jù)等邊三角形的性質(zhì)得到∠A=∠B=∠C=60°,利用SAS定理證明△AMD≌△BDN;②分∠CNM=90°、∠CMN=90°兩種情況,根據(jù)直角三角形的性質(zhì)列式計(jì)算即可;(2)證明△ABM≌△CAN,根據(jù)全等三角形的性質(zhì)得到∠ABM=∠CAN,根據(jù)三角形的外角性質(zhì)計(jì)算,得到答案.【詳解】(1)①∵△ABC為等邊三角形,∴∠A=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論