版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省芒市中考數(shù)學真題分類(平行線的證明)匯編綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,下列推理正確的是(
)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴2、如圖,,若,則的度數(shù)是(
)A.80° B.70° C.65° D.60°3、如圖,結合圖形作出了如下判斷或推理:①如圖甲,如果,為垂足,那么點到的距離等于,兩點間的距離;②如圖乙,如果,那么;③如圖丙,如果,,那么;④如圖丁,如果,,那么.其中正確的有(
)A.1個 B.2個 C.3個 D.4個4、如圖,、是的外角角平分線,若,則的大小為(
)A. B. C. D.5、如圖,點E在的延長線上,下列條件不能判斷的是(
)A. B. C. D.6、在四邊形ABCD中,如果∠B+∠C=180°,那么
()A.AB∥CD B.AD∥BC C.AB與CD相交 D.AB與DC垂直7、下列圖形中,由AB∥CD,能得到∠1=∠2的是(
)A. B.C. D.8、如圖,是某企業(yè)甲、乙兩位員工的能力測試結果的網(wǎng)狀圖,以O為圓心的五個同心圓分別代表能力水平的五個等級由低到高分別賦分1至5分,由原點出發(fā)的五條線段分別指向能力水平的五個維度,網(wǎng)狀圖能夠更加直觀的描述測試者的優(yōu)勢和不足,觀察圖形,有以下幾個推斷:①甲和乙的動手操作能力都很強;②缺少探索學習的能力是甲自身的不足;③與甲相比乙需要加強與他人的溝通合作能力;④乙的綜合評分比甲要高.其中合理的是(
)A.①③ B.②④ C.①②③ D.①②③④第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,∠C=62°,△ABC兩個外角的角平分線相交于G,則∠G的度數(shù)為_____.2、命題“如果a+b=0,那么a,b互為相反數(shù)”的逆命題為____________________________.3、如圖,直線a,b與直線c,d相交,若∠1=∠2,∠3=70°,則∠4的度數(shù)是;4、如圖,已知A,B,C三點及直線EF,過B點作AB∥EF,過B點作BC∥EF,那么A,B,C三點一定在同一條直線上,依據(jù)是___________.5、將一副直角三角板如圖放置,已知,,,則________°.6、如圖,將三角形紙片ABC沿EF折疊,使得A點落在BC上點D處,連接DE,DF,.設,,則α與β之間的數(shù)量關系是________.7、請寫出命題“如果,那么”的逆命題:________.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知∠1+∠AFE=180°,∠A=∠2,求證:∠A=∠C+∠AFC證明:∵∠1+∠AFE=180°∴CD∥EF(,)∵∠A=∠2
∴()(,)∴AB∥CD∥EF(,)∴∠A=,∠C=,(,)∵∠AFE=∠EFC+∠AFC,∴=.2、指出下列命題的題設和結論,并判斷它們是真命題還是假命題,如果是假命題,舉出一個反例.(1)兩個角的和等于平角時,這兩個角互為補角;(2)內錯角相等;(3)兩條平行線被第三條直線所截,內錯角相等.3、如圖,,.(1)試說明;(2)若,且,求的度數(shù).4、已知:如圖1,,BD平分,,過點A作直線,延長CD交MN于點E(1)當時,的度數(shù)為______.(2)如圖2,當時,求的度數(shù);(3)設,用含x的代數(shù)式表示的度數(shù).5、請閱讀下列材料,并完成相應的任務:有趣的“飛鏢圖”如圖,這種形似飛鏢的四邊形,可以形象地稱它為“飛鏢圖”.當我們仔細觀察后發(fā)現(xiàn),它實際上就是凹四邊形.那么它具有哪些性質呢?又將怎樣應用呢?下面我們進行認識與探究:凹四邊形通俗地說,就是一個角“凹”進去的四邊形,其性質有:凹四邊形中最大內角外面的角等于其余三個內角之和.(即如圖1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如圖2,連接AB,則在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如圖3,連接CD并延長至F,∵∠1和∠3分別是△ACD和△BCD的一個外角,......大家在探究的過程中,還發(fā)現(xiàn)有很多方法可以證明這一結論,你有自己的方法嗎?任務:(1)填空:“方法一”主要依據(jù)的一個數(shù)學定理是;(2)探索:根據(jù)“方法二”中輔助線的添加方式,寫出該證明過程的剩余部分;(3)應用:如圖4,AE是∠CAD的平分線,BF是∠CBD的平分線,AE與BF交于G,若∠ADB=150°,∠AGB=110°,請你直接寫出∠C的大?。?、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.7、(1)在銳角中,邊上的高所在直線和邊上的高所在直線的交點為,,求的度數(shù).(2)如圖,和分別平分和,當點在直線上時,且B、P、D三點共線,,則_________.(3)在(2)的基礎上,當點在直線外時,如下圖:,,求的度數(shù).-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行線的判定判斷即可.【詳解】解:A、由∠2=∠4不能推出AD∥BC,故本選項錯誤;B、∵∠1=∠3,∴AD∥BC,故本選項正確;C、由∠4+∠D=180°不能推出AD∥BC,故本選項錯誤;D、由∠4+∠B=180°不能推出AD∥BC,故本選項錯誤;故選:B.【考點】本題考查了平行線的判定的應用,注意:同旁內角互補,兩直線平行,內錯角相等,兩直線平行.2、B【解析】【分析】由根據(jù)全等三角形的性質可得,再利用三角形內角和進行求解即可.【詳解】,,,,,,故選:B.【考點】本題考查了全等三角形的性質及三角形的內角和定理,熟練掌握知識點是解題的關鍵.3、B【解析】【分析】根據(jù)點到直線的距離及兩點間的距離的定義可判斷①;根據(jù)平行線的性質及三角形的外角的性質可判斷②;根據(jù)平行線的判定可判斷③;根據(jù)平行線的判定與性質可判斷④.【詳解】解:①由于直線外一點到直線的垂線段的長度,叫做這點到這條直線的距離,故正確;②設AB與DE相交于點O.∵AB∥CD,∴∠AOE=∠D.又∵∠AOE>∠B,∴∠D>∠B,故錯誤;③∵∠ACD=∠CAB,∴AB∥CD,,故錯誤;④∵∠1=∠2,∴AD∥BC,∴∠D+∠BCD=180°,又∵∠D=120°,∴∠BCD=60°,故正確.故選:B.【考點】本題主要考查了點到直線的距離的定義,平行線的判定與性質,三角形的外角的性質,正確理解相關概念和性質是解本題的關鍵.4、B【解析】【分析】首先根據(jù)三角形內角和與∠P得出∠PBC+∠PCB,然后根據(jù)角平分線的性質得出∠ABC和∠ACB的外角和,進而得出∠ABC+∠ACB,即可得解.【詳解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分線∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故選:B.【考點】此題主要考查角平分線以及三角形內角和的運用,熟練掌握,即可解題.5、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當∠5=∠B時,AB∥CD,不合題意;B、當∠1=∠2時,AB∥CD,不合題意;C、當∠B+∠BCD=180°時,AB∥CD,不合題意;D、當∠3=∠4時,AD∥CB,符合題意;故選:D.【考點】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關鍵.6、A【解析】【分析】∠B與∠C是直線AB,CD被直線BC所截構成的同旁內角,根據(jù)∠B+∠C=180°,得到AB∥CD.【詳解】∵∠B+∠C=180°,∴AB∥CD(同旁內角互補,兩直線平行).故選A.【考點】正解找出“三線八角”中的同位角、內錯角、同旁內角是正確答題的關鍵,不能遇到相等或互補關系的角就誤認為具有平行關系,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行.7、B【解析】【分析】根據(jù)平行四邊形的性質逐項判斷即可.【詳解】A、∵AB//CD,∴∠1+∠2=180°.故本選項不符合題意;B、如圖,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本選項正確.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本選項不符合題意;D、當梯形ABDC是等腰梯形時才有,∠1=∠2.故本選項不符合題意.故選:B.【考點】本題考查平行線的性質,熟練掌握平行線的性質是解答的關鍵.8、D【解析】【分析】根據(jù)甲、乙兩位員工的能力測試結果的網(wǎng)狀圖一一判斷即可得到答案;【詳解】解:因為甲、乙兩位員工的動手操作能力均是5分,故甲乙兩人的動手操作能力都很強,故①正確;因為甲的探索學習的能力是1分,故缺少探索學習的能力是甲自身的不足,故②正確;甲的與他人的溝通合作能力是5分,乙的與他人的溝通合作能力是3分,故與甲相比乙需要加強與他人的溝通合作能力,故③正確;乙的綜合評分是:3+4+4+5+5=22分,甲的綜合評分是:1+4+4+5+5=19分,故乙的綜合評分比甲要高,故④正確;故選:D;【考點】本題主要考查圖象信息題,能從圖象上獲取相關的信息是解題的關鍵;二、填空題1、59°##59度【解析】【分析】先利用三角形內角和定理求出∠CAB+∠CBA=180°-∠C=118°,從而利用三角形外角的性質求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分線的定義求出,由此求解即可.【詳解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC兩個外角的角平分線相交于G,∴,,∴,∴∠G=180°-∠GAB-∠GBA=59°,故答案為:59°.【考點】本題主要考查了三角形內角和定理,三角形外角的性質,角平分線的定義,熟知相關知識是解題的關鍵.2、如果a,b互為相反數(shù),那么a+b=0【解析】【分析】交換原命題的題設與結論即可得到其逆命題.【詳解】解:逆命題為:如果a,b互為相反數(shù),那么a+b=0.故答案為:如果a,b互為相反數(shù),那么a+b=0.【考點】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設和結論兩部分組成,題設是已知事項,結論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.有些命題的正確性是用推理證實的,這樣的真命題叫做定理.也考查了逆命題.3、110°【解析】【詳解】試題解析:∵∠1=∠2,∴ab,∴∠3=∠5,故答案為點睛:同位角相等,兩直線平行.4、過直線外一點,有且只有一條直線與已知直線平行【解析】【詳解】∵AB∥EF,BC∥EF,∴A、B.C三點在同一條直線上(過直線外一點,有且只有一條直線與已知直線平行).故答案為過直線外一點,有且只有一條直線與已知直線平行.5、105【解析】【分析】根據(jù)平行線的性質可得,根據(jù)三角形內角和定理以及對頂角相等即可求解.【詳解】,,,∵∠E=60°,∴∠F=30°,故答案為:105【考點】本題考查了平行線的性質,三角形內角和定理,掌握平行線的性質是解題的關鍵.6、【解析】【分析】由折疊的性質可知:,再利用三角形內角和定理及角之間的關系證明,,即可找出α與β之間的數(shù)量關系.【詳解】解:由折疊的性質可知:,∵,∴,∴,∵,,∴,∴,故答案為:.【考點】本題考查折疊的性質,三角形內角和定理,解題的關鍵是根據(jù)折疊的性質求出,根據(jù)角之間的關系求出,.7、如果,那么【解析】【分析】根據(jù)逆命題的概念解答即可.【詳解】解:命題“如果,那么”的逆命題是“如果,那么”,故答案為:如果,那么.【考點】此題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結論,而第一個命題的結論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.三、解答題1、同旁內角互補兩直線平行;AB∥CD;同位角相等,兩直線平行;兩條直線都與第三條直線平行,則這兩直線也互相平行;∠AFE,∠EFC;兩直線平行,內錯角相等;∠A,∠C+∠AFC.【解析】【分析】根據(jù)同旁內角互補,兩直線平行可得CD∥EF,根據(jù)∠A=∠2利用同位角相等,兩直線平行,AB∥CD,根據(jù)平行同一直線的兩條直線平行可得AB∥CD∥EF根據(jù)平行線的性質可得∠A=∠AFE
,∠C=∠EFC,根據(jù)角的和可得∠AFE=∠EFC+∠AFC即可.【詳解】證明:∵∠1+∠AFE=180°∴CD∥EF(同旁內角互補,兩直線平行),∵∠A=∠2,∴(AB∥CD)(同位角相等,兩直線平行),∴AB∥CD∥EF(兩條直線都與第三條直線平行,則這兩直線也互相平行)∴∠A=∠AFE,∠C=∠EFC,(兩直線平行,內錯角相等)∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC.故答案為:同旁內角互補兩直線平行;AB∥CD;同位角相等,兩直線平行;兩條直線都與第三條直線平行,則這兩直線也互相平行;∠AFE,∠EFC;兩直線平行,內錯角相等;∠A,∠C+∠AFC.【考點】本題考查平行線的性質與判定,角的和差,掌握平行線的性質與判定是解題關鍵.2、(1)題設:如果兩個角的和等于平角時,結論:那么這兩個角互為補角;是真命題;(2)題設:如果兩個角是內錯角,那么這兩個角相等;是假命題,反例見解析;(3)題設:如果兩條平行線被第三條直線所截,結論:那么內錯角相等.是真命題.【解析】【分析】(1)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設,“那么”后面寫結論可得題設和結論,根據(jù)平角的定義可得該命題是真命題;(2)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設,“那么”后面寫結論可得題設和結論,根據(jù)平行線的性質可得該命題是假命題;利用相交直線被第三條直線所截,內錯角不相等可舉反例;(3)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設,“那么”后面寫結論可得題設和結論,根據(jù)平行線的性質可得該命題是真命題;.【詳解】(1)題設:如果兩個角的和等于平角,結論:那么這兩個角互為補角;是真命題;(2)題設:如果兩個角是內錯角,那么這兩個角相等;是假命題,如圖∠1與∠2是內錯角,∠2>∠1;(3)題設:如果兩條平行線被第三條直線所截,結論:那么內錯角相等.是真命題.【考點】本題考查了命題與定理的相關知識.將命題寫成“如果…,那么…”的形式,就是要明確命題的題設和結論,“如果”后面寫題設,“那么”后面寫結論.關鍵是明確命題與定理的組成部分,會判斷命題的題設與結論.3、(1)見解析(2)35°【解析】【分析】(1)根據(jù),可得BM∥CN,從而得到∠CBM=∠BCN,再由,可得∠ABC=∠BCD,即可求證;(2)根據(jù)對頂角相等可得∠ABD=110°,再由三角形的內角和定理可得∠BAD=35°,然后根據(jù)AB∥CD,即可求解.(1)解:∵,∴BM∥CN,∴∠CBM=∠BCN,∵,∴∠3+∠CBM=∠4+∠BCN,即∠ABC=∠BCD,∴AB∥CD;(2)解:∵∠ABD=∠EBF,,∴∠ABD=110°,∴∠BAD+∠BDA=70°,∵,∴∠BAD=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.【考點】本題主要考查了平行線的性質和判定,對頂角的性質,三角形的內角和定理,熟練掌握平行線的性質和判定,對頂角的性質,三角形的內角和定理是解題的關鍵.4、(1)(2)(3)【解析】【分析】(1)根據(jù)題意證明,進而可得,根據(jù),即可求解.繼而可得,即可求得;(2)根據(jù)全等三角形的性質可得,根據(jù)三角形內角和定理可得,進而根據(jù)即可求解.(3)根據(jù)(1)(2)的方法分類討論即可求解.(1)解:BD平分,,,,,,,,,,,故答案為:,(2)解:由(1)可知,,,,,,,(3)解:設,,,,,當點在點的左側時,,當點在點的右側時,,.【考點】本題考查了全等三角形的性質與判定,三角形的內角和定理的應用,掌握全等三角形的性質與判定是解題的關鍵.5、(1)三角形內角和定理(或三角形的內角和等于180°);(2)見解析;(3)70°【解析】【分析】(1)根據(jù)三角形內角和定理,即可求解;(2)根據(jù)三角形外角的性質可得∠1=∠2+∠A,∠3=∠4+∠B,從而得到∠1+∠3=∠2+∠A+∠4+∠B,即可求證;(3)由(2)可得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,從而得到∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,再由AE是∠CAD的平分線,BF是∠CBD的平分線,可得150°-∠C=2(110°-∠C),即可求解.(1)解:三角形內角和定理(或三角形的內角和等于180°)(2)證明:連接CD并延長至F,∵∠1和∠2分別是△ACD和△BCD的一個外角,∴∠1=∠2+∠A,∠3=∠4+∠B,∴∠1+∠3=∠2+∠A+∠4+∠B,即∠ADB=∠A+∠B+∠ACB;(3)解:由(2)得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,∵∠ADB=150°,∠AGB=110°,∴∠CAD+∠CBD+∠C=150°,∠CAE+∠CBF+∠C=110°,∴∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,∵AE是∠CAD的平分線,BF是∠CBD的平分線,∴∠CAD=2∠CAE,∠CBD=2∠CBF,∴∠CAD+∠CBD=2(∠CAE+∠CBF),∴150°-∠C=2(110°-∠C),解得:∠C=70°.【考點】本題主要考查了三角形的內角和定理,三角形外角的性質,有關角平分線的計算,熟練掌握三角形內角和定理,三角形的一個外角等于與它不相鄰的兩個內角的和是解題的關鍵.6、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內角和可得結論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結論;②利用①的結論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點O作CE,BD的垂線,分別交BC于點K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年福建莆田石南輪渡第二輪船員招聘11人筆試模擬試題及答案解析
- 2026浙江溫州市甌江口新區(qū)國有資產(chǎn)經(jīng)營管理有限公司勞務外包員工招聘5人考試備考題庫及答案解析
- 2026四川成都武侯區(qū)-金堂縣“人才聯(lián)聘”面向社會考核招聘事業(yè)單位高層次人才3人筆試備考題庫及答案解析
- 2026年淮南安徽理工大學科技園技術經(jīng)理人招募考試備考試題及答案解析
- 2026上海市事業(yè)單位招聘2468人筆試模擬試題及答案解析
- 2026上半年安徽事業(yè)單位聯(lián)考安慶市迎江區(qū)招聘14人考試備考試題及答案解析
- 2026年二手房市場的崛起趨勢與預測
- 2026年多層液體的流動與分層特性
- 2026年創(chuàng)新的時間黑金色的美麗蛻變
- 2026年地下水的質量監(jiān)測與控制措施
- 2025年高校行政管理崗位招聘面試指南與模擬題
- 醫(yī)療售后服務課件
- 返修管理課件
- 2025中考九年級語文《標點符號》復習練習題
- 去極端化法治宣傳課件
- T/CCOA 7-2020低菌小麥粉
- 投資項目合同協(xié)議書范本
- 醫(yī)院信息安全保密協(xié)議5篇
- 壓縮模型的魯棒性分析-洞察闡釋
- DB2311T 082-2024云杉小墨天牛監(jiān)測技術規(guī)程
- 養(yǎng)殖用地土地轉讓合同范例
評論
0/150
提交評論