強(qiáng)化訓(xùn)練京改版數(shù)學(xué)9年級上冊期末試題及完整答案詳解【奪冠系列】_第1頁
強(qiáng)化訓(xùn)練京改版數(shù)學(xué)9年級上冊期末試題及完整答案詳解【奪冠系列】_第2頁
強(qiáng)化訓(xùn)練京改版數(shù)學(xué)9年級上冊期末試題及完整答案詳解【奪冠系列】_第3頁
強(qiáng)化訓(xùn)練京改版數(shù)學(xué)9年級上冊期末試題及完整答案詳解【奪冠系列】_第4頁
強(qiáng)化訓(xùn)練京改版數(shù)學(xué)9年級上冊期末試題及完整答案詳解【奪冠系列】_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、下列說法中不正確的是()A.任意兩個(gè)等邊三角形相似 B.有一個(gè)銳角是40°的兩個(gè)直角三角形相似C.有一個(gè)角是30°的兩個(gè)等腰三角形相似 D.任意兩個(gè)正方形相似2、若關(guān)于x的二次函數(shù)y=ax2+bx的圖象經(jīng)過定點(diǎn)(1,1),且當(dāng)x<﹣1時(shí)y隨x的增大而減小,則a的取值范圍是()A. B. C. D.3、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(

)A. B. C. D.4、如圖,點(diǎn)D、E分別在△ABC的邊BA、CA的延長線上,且DE∥BC,已知AE=3,AC=6,AD=2,則BD的長為()A.4 B.6 C.7 D.85、已知二次函數(shù)y=ax2+bx+c,其中a<0,若函數(shù)圖象與x軸的兩個(gè)交點(diǎn)均在負(fù)半軸,則下列判斷錯(cuò)誤的是(

)A.a(chǎn)bc<0 B.b>0 C.c<0 D.b+c<06、如圖,點(diǎn)A(2,t)在第一象限,OA與x軸所夾銳角為,tan=2,則t的值為(

)A.4 B.3 C.2 D.1二、多選題(7小題,每小題2分,共計(jì)14分)1、在△ABC中,∠C=90°,下列各式一定成立的是(

)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA2、運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時(shí)間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時(shí)落地D.足球被踢出1.5s時(shí),距離地面的高度是11m3、如圖,在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,下面等式中正確的是(

)A. B.C. D.4、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構(gòu)成的圖形記作C2,將C1和C2構(gòu)成的圖形記作C3.關(guān)于圖形C3,給出的下列四個(gè)結(jié)論,正確的是(

)A.圖形C3恰好經(jīng)過4個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))B.圖形C3上任意一點(diǎn)到原點(diǎn)的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π5、如圖,AB是圓O的直徑,點(diǎn)G是圓上任意一點(diǎn),點(diǎn)C是的中點(diǎn),,垂足為點(diǎn)E,連接GA,GB,GC,GD,BC,GB與CD交于點(diǎn)F,則下列表述正確的是(

)A. B.C. D.6、如圖,在⊙O中,AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CE⊥AB于點(diǎn)F,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.則下列結(jié)論中正確的是()A.∠BAD=∠ABC B.GP=GD C.點(diǎn)P是△ACQ的外心 D.AP?AD=CQ?CB7、下列各組圖形中相似的是(

)A.各有一個(gè)角是45°的兩個(gè)等腰三角形B.各有一個(gè)角是60°的兩個(gè)等腰三角形C.各有一個(gè)角是105°的兩個(gè)等腰三角形D.兩個(gè)等腰直角三角形第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,△ABC中,∠ACB=90°,AB=5,AC=3,BC為半圓O的直徑,將△ABC沿射線CB方向平移得到△A1B1C1.當(dāng)A1B1與半圓O相切于點(diǎn)D時(shí),平移的距離的長為_____.2、已知函數(shù)y的圖象如圖所示,若直線y=kx﹣3與該圖象有公共點(diǎn),則k的最大值與最小值的和為_____.3、如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,直線DE是⊙O的切線,切點(diǎn)為D,交AC于E,若⊙O半徑為1,BC=4,則圖中陰影部分的面積為_____.4、cos45°-tan60°=________;5、制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來的3倍,那么擴(kuò)大后長方形廣告牌的成本是_____元.6、如圖,小明在距離地面30米的P處測得A處的俯角為15°,B處的俯角為60°.若斜面坡度為1:,則斜坡AB的長是__________米.7、圖1是一種手機(jī)托架,使用該手機(jī)托架示意圖如圖3所示,底部放置手機(jī)處寬AB1.2厘米,托架斜面長BD6厘米,它有C到F共4個(gè)檔位調(diào)節(jié)角度,相鄰兩個(gè)檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號手機(jī)置于托架上(圖2),手機(jī)屏幕長AG是15厘米,O是支點(diǎn)且OBOE2.5厘米(支架的厚度忽略不計(jì)).當(dāng)支架調(diào)到E檔時(shí),點(diǎn)G離水平面的距離GH為__________cm.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,矩形ABCD中,AB=6cm,BC=12cm..點(diǎn)M從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/秒的速度向B點(diǎn)移動(dòng),點(diǎn)N從點(diǎn)B開始沿BC邊以2cm/秒的速度向點(diǎn)C移動(dòng).若M,N分別從A,B點(diǎn)同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時(shí),求△DMN的面積.2、如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),且,.(1)求拋物線的表達(dá)式;(2)點(diǎn)是拋物線上一點(diǎn).①在拋物線的對稱軸上,求作一點(diǎn),使得的周長最小,并寫出點(diǎn)的坐標(biāo);②連接并延長,過拋物線上一點(diǎn)(點(diǎn)不與點(diǎn)重合)作軸,垂足為,與射線交于點(diǎn),是否存在這樣的點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.3、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),與反比例函數(shù)y=(x>0)交于點(diǎn)C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點(diǎn)C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點(diǎn),若CD=CE,求點(diǎn)D坐標(biāo).4、在矩形中,于點(diǎn),點(diǎn)是邊上一點(diǎn).(1)若平分,交于點(diǎn),PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.5、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點(diǎn)A(2,6)和B(4,4),直線l經(jīng)過點(diǎn)B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達(dá)式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點(diǎn)R是直線1上的點(diǎn),如果△AOK與以O(shè),Q,R為頂點(diǎn)的三角形相似,請直接寫出點(diǎn)R的縱坐標(biāo);(3)如圖2,正方形CDEF的頂點(diǎn)C是第二象限拋物線上的點(diǎn),點(diǎn)D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點(diǎn)分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點(diǎn)為N,且點(diǎn)N的縱坐標(biāo)是﹣1.求:①tan∠DCG的值;②點(diǎn)C的坐標(biāo).6、某商場經(jīng)營某種品牌的玩具,購進(jìn)的單價(jià)是30元,根據(jù)市場調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600元,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價(jià)為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價(jià)x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于45元,且商場要完成不少于480件的銷售任務(wù),求商場銷售該品牌玩具獲利的最大利潤是多少元?-參考答案-一、單選題1、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個(gè)等邊三角形相似,說法正確;B.有一個(gè)銳角是40°的兩個(gè)直角三角形相似,說法正確;C.有一個(gè)角是30°的兩個(gè)等腰三角形相似,30°有可能是頂角或底角,故說法錯(cuò)誤;D.任意兩個(gè)正方形相似,說法正確.故選:C.【考點(diǎn)】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關(guān)鍵.2、D【解析】【分析】根據(jù)題意開口向上,且對稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數(shù)y=ax2+bx可知拋物線過原點(diǎn),∵拋物線定點(diǎn)(1,1),且當(dāng)x<-1時(shí),y隨x的增大而減小,∴拋物線開口向上,且對稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)題意得關(guān)于a的不等式組是解題的關(guān)鍵.3、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個(gè)內(nèi)角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點(diǎn)】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計(jì)算,掌握圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計(jì)算是解題關(guān)鍵.4、B【解析】【分析】只需要證明△AED∽△ACB即可求解.【詳解】解∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED∴△AED∽△ACB∴∴∴BD=AD+AB=2+4=6.故選B.【考點(diǎn)】本題主要考查了平行線的性質(zhì),相似三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.5、B【解析】【分析】根據(jù)函數(shù)圖象與x軸的兩個(gè)交點(diǎn)均在負(fù)半軸,可得拋物線的對稱軸與x軸負(fù)半軸相交,可以判斷a,b,c的符號,進(jìn)而可得結(jié)論.【詳解】解:因?yàn)楹瘮?shù)圖象與x軸的兩個(gè)交點(diǎn)均在負(fù)半軸,所以拋物線的對稱軸與x軸負(fù)半軸相交,所以﹣<0,c<0,因?yàn)閍<0,所以b<0,因?yàn)閏<0,所以abc<0,b+c<0,故選:B.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解決本題的關(guān)鍵是掌握二次函數(shù)圖象與系數(shù)的關(guān)系.6、A【解析】【分析】根據(jù)點(diǎn)A的坐標(biāo),利用銳角三角函數(shù)定義求出t的值即可.【詳解】如圖,過點(diǎn)A作AB⊥x軸與點(diǎn)B,∵點(diǎn)A在第一象限,坐標(biāo)為(2,t),∴,在RT△AOB中,tan,則t=4,故選A.【考點(diǎn)】本題考查了三角函數(shù)的定義,熟練掌握定義即可求解.二、多選題1、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項(xiàng)A錯(cuò)誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點(diǎn)】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.2、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯(cuò)誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時(shí),h=0,∴足球被踢出9s時(shí)落地,故C正確,∵t=1.5時(shí),h=11.25,故D錯(cuò)誤.∴正確的有②③,故選:BC【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.3、ABD【解析】【分析】先根據(jù)同角的余角相等得出∠G=∠EFH,再根據(jù)三角函數(shù)的定義求解即可.【詳解】解:∵在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以選項(xiàng)A、B、D都是正確的,故選:ABD.【考點(diǎn)】本題利用了同角的余角相等和銳角三角函數(shù)的定義解答,屬較簡單題目.4、ABD【解析】【分析】畫出圖象C3,以及以O(shè)為圓心,以1為半徑的圓,再作出⊙O內(nèi)接正方形,根據(jù)圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經(jīng)過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個(gè)整點(diǎn),故正確;B.由圖象可知,圖形C3上任意一點(diǎn)到原點(diǎn)的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯(cuò)誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內(nèi)接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點(diǎn)】本題考查了二次函數(shù)的圖象與幾何變換,數(shù)形結(jié)合是解題的關(guān)鍵.5、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應(yīng)相等,∴不能證得,故B不正確;∵點(diǎn)C是的中點(diǎn),∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點(diǎn)C是的中點(diǎn),∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點(diǎn)】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.6、BCD【解析】【分析】A錯(cuò)誤,假設(shè)成立,推出矛盾即可;B正確.想辦法證明即可;C正確.想辦法證明即可;D正確.證明,可得,證明,可得,證明,可得,由此即可解決問題;【詳解】解:A錯(cuò)誤,假設(shè),則,,,顯然不可能,故A錯(cuò)誤.B正確.連接.是切線,,,,,,,,,故B正確.C正確.,,,,,,是直徑,,,,,,,點(diǎn)是的外心.故C正確.D正確.連接.,,,,,,,,可得,,,,可得,.故D正確,故選:BCD.【考點(diǎn)】本題考查相似三角形的判定和性質(zhì)、垂徑定理、圓周角定理、切線的性質(zhì)等知識,解題的關(guān)鍵是正確現(xiàn)在在相似三角形解決問題,屬于中考選擇題中的壓軸題.7、BCD【解析】【分析】根據(jù)相似三角形的判定方法和等腰三角形的性質(zhì)進(jìn)行解答即可得.【詳解】解:A、沒有指明這個(gè)的角是頂角還是底角,則無法判定其相似,選項(xiàng)說法錯(cuò)誤,不符合題意;B、有一個(gè)角為的等腰三角形是等邊三角形,根據(jù)三組對應(yīng)邊的比相等的兩個(gè)三角形相似判定這兩個(gè)三角形相似,選項(xiàng)說法正確,符合題意;C、已知一個(gè)角為的等腰三角形,我們可以判定其為頂角,頂角相等且兩條腰對應(yīng)成比例則這兩個(gè)三角形相似,選項(xiàng)說法正確,符合題意;D、兩個(gè)等腰直角三角形,可以根據(jù)兩組對應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個(gè)三角形相似來判定這兩個(gè)三角形相似,選項(xiàng)說法正確,符合題意;故選BCD.【考點(diǎn)】本題考查了相似三角形,解題的根據(jù)是掌握相似三角形的判定和等腰三角形的性質(zhì).三、填空題1、【解析】【分析】連結(jié)OG,如圖,根據(jù)勾股定理得到BC=4,根據(jù)平移的性質(zhì)得到CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,根據(jù)切線的性質(zhì)得到OD⊥A1B1,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】連結(jié)OG,如圖,∵∠BAC=90°,AB=5,AC=3,∴BC==4,∵Rt△ABC沿射線CB方向平移,當(dāng)A1B1與半圓O相切于點(diǎn)D,得△A1B1C1,∴CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,∵A1B1與半圓O相切于點(diǎn)D,∴OD⊥A1B1,∵BC=4,線段BC為半圓O的直徑,∴OB=OC=2,∵∠GEO=∠DEF,∴Rt△B1OD∽Rt△B1A1C1,∴,即,解得OB1=,∴BB1=OB1﹣OB=﹣2=,故答案為.【考點(diǎn)】本題考查了切線的性質(zhì),平移的性質(zhì)、勾股定理和相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)是解題的關(guān)鍵.2、17【解析】【分析】根據(jù)題意可知,當(dāng)直線經(jīng)過點(diǎn)(1,12)時(shí),直線y=kx-3與該圖象有公共點(diǎn);當(dāng)直線與拋物線只有一個(gè)交點(diǎn)時(shí),(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它們的和為17.【詳解】解:當(dāng)直線經(jīng)過點(diǎn)(1,12)時(shí),12=k-3,解得k=15;當(dāng)直線與拋物線只有一個(gè)交點(diǎn)時(shí),(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,∴10+k=±12,解得k=2或k=-22(舍去),∴k的最大值是15,最小值是2,∴k的最大值與最小值的和為15+2=17.故答案為:17.【考點(diǎn)】本題考查分段函數(shù)的圖象與性質(zhì),一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,結(jié)合圖象求出k的最大值和最小值是解題的關(guān)鍵.3、【解析】【分析】連接OD、OE、AD,AD交OE于F,如圖,根據(jù)切線的性質(zhì)得到∠BAC=90°,利用余弦的定義可計(jì)算出∠B=60°,則根據(jù)圓周角定理得到∠ADB=90°,∠AOD=120°,于是可計(jì)算出BD=1,AD=,接著證明△ADE為等邊三角形,求出OF=,根據(jù)扇形的面積公式,利用S陰影部分=S四邊形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD進(jìn)行計(jì)算.【詳解】解:連接OD、OE、AD,AD交OE于F,如圖,∵AC是⊙O的切線,切點(diǎn)為A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直線DE、EA都是⊙O的切線,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE為等邊三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S陰影部分=S四邊形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案為.【考點(diǎn)】本題考查圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì),掌握和運(yùn)用圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì)是解題關(guān)鍵.4、【解析】【分析】根據(jù)特殊角的三角函數(shù)值進(jìn)行計(jì)算.【詳解】解:原式.故答案是:.【考點(diǎn)】本題考查特殊角的三角函數(shù)值,解題的關(guān)鍵是記住特殊角的三角函數(shù)值.5、1080【解析】【分析】直接利用相似多邊形的性質(zhì)進(jìn)而得出答案.【詳解】∵將此廣告牌的四邊都擴(kuò)大為原來的3倍,∴面積擴(kuò)大為原來的9倍,∴擴(kuò)大后長方形廣告牌的成本為:120×9=1080(元).故答案為:1080.【考點(diǎn)】此題考查相似多邊形的性質(zhì),相似多邊形的面積的比等于相似比的平方.6、【解析】【分析】首先根據(jù)題意得出∠ABF=30°,進(jìn)而得出∠PBA=90°,∠BAP=45°,再利用銳角三角函數(shù)關(guān)系求出即可.【詳解】解:如圖所示:過點(diǎn)A作AF⊥BC于點(diǎn)F,∵斜面坡度為1:,∴tan∠ABF=,∴∠ABF=30°,∵在距離地面30米的P處測得A處的俯角為15°,B處的俯角為60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°=,解得:PB=,故AB=m,故答案為:.【考點(diǎn)】此題主要考查了解直角三角形的應(yīng)用,正確得出PB=AB是解題關(guān)鍵.7、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質(zhì)求出DT,BT,AD,即可求出GH的長.【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點(diǎn)】本題考查了相似三角形的應(yīng)用,勾股定理的應(yīng)用等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題,屬于中考填空題中的壓軸題.四、解答題1、(1)27(2)【解析】【分析】(1)根據(jù)t秒時(shí),M、N兩點(diǎn)的運(yùn)動(dòng)路程,分別表示出AM、BM、BN、CN的長度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN進(jìn)行列式即可得到S關(guān)于t的函數(shù)關(guān)系式,通過配方即可求得最小值;(2)當(dāng)△DMN為直角三角形時(shí),由∠MDN<90°,分∠NMD或∠MND為90°兩種情況進(jìn)行求解即可得.【詳解】(1)由題意,得AM=tcm,BN=2tcm,則BM=(6-t)cm,CN=(12-2t)cm,∵S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN,∴S=12×6-×12t-(6-t)·2t-×6(12-2t)=t2-6t+36=(t-3)2+27,∵t=3在范圍0<t<6內(nèi),∴S的最小值為27cm2;(2)當(dāng)△DMN為直角三角形時(shí),∵∠MDN<90°,∴可能∠NMD或∠MND為90°,當(dāng)∠NMD=90°時(shí),DN2=DM2+MN2,∴(12-2t)2+62=122+t2+(6-t)2+(2t)2,解得t=0或-18,不在范圍0<t<6內(nèi),∴不可能;當(dāng)∠MND=90°時(shí),DM2=DN2+MN2,∴122+t2=(12-2t)2+62+(6-t)2+(2t)2,解得t=或6,(6不在范圍0<t<6內(nèi)舍),∴S=(-3)2+27=cm2.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用,涉及矩形的性質(zhì)、三角形面積、二次函數(shù)的性質(zhì)、勾股定理的應(yīng)用等知識,熟練掌握和靈活應(yīng)用相關(guān)知識是解題的關(guān)鍵.2、(1);(2)①連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求,點(diǎn)的坐標(biāo)為;②存在;點(diǎn)的坐標(biāo)為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點(diǎn)式.(2)①因?yàn)殛P(guān)于對稱軸對稱,所以,由兩點(diǎn)之間線段最短,知連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求,先用待定系數(shù)法求出解析式,將對稱軸代入得到點(diǎn)坐標(biāo).②設(shè)點(diǎn),根據(jù)拋物線的解析式、直線的解析式,寫出Q、M的坐標(biāo),分當(dāng)在上方、下方兩種情況,列關(guān)于m的方程,解出并取大于-2的解,即可寫出的坐標(biāo).【詳解】(1)∵,,結(jié)合圖象,得A(-2,0),C(3,0),∴拋物線可表示為:,∴拋物線的表達(dá)式為;(2)①∵關(guān)于對稱軸對稱,∴,∴連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求.將點(diǎn),的坐標(biāo)代入一次函數(shù)表達(dá)式,得直線的函數(shù)表達(dá)式為.拋物線的對稱軸為直線,當(dāng)時(shí),,故點(diǎn)的坐標(biāo)為;②存在;設(shè)點(diǎn),則,.當(dāng)在上方時(shí),,,,解得(舍)或;當(dāng)在下方時(shí),,,,解得(舍)或,綜上所述,的值為或5,點(diǎn)的坐標(biāo)為或.【考點(diǎn)】本題考查了二次函數(shù)與一次函數(shù)綜合問題,熟練掌握待定系數(shù)法求解析式、最短路徑問題是解題的基礎(chǔ),動(dòng)點(diǎn)問題中分類討論與數(shù)形結(jié)合轉(zhuǎn)化為方程問題是解題的關(guān)鍵.3、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點(diǎn)坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點(diǎn)坐標(biāo).【詳解】解:(1)作CM⊥y軸于M,如圖,當(dāng)x=0時(shí),y=x+2=2,則A(0,2),當(dāng)y=0時(shí),x+2=0,解得x=﹣2,則B(﹣2,0),∵M(jìn)C∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵M(jìn)C=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點(diǎn)】本題是反比例函數(shù)與一次函數(shù)的綜合題,涉及到待定系數(shù)法求函數(shù)解析式、平行線分線段成比例定理、等腰三角形的性質(zhì),有一定的難度4、(1)見解析;(2)見解析【解析】【分析】(1)想辦法證明AG=PF,AG∥PF,推出四邊形AGFP是平行四邊形,再證明PA=PF即可解決問題.(2)證明△AEP∽△DEC,可得,由此即可解決問題.【詳解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四邊形是平行四邊形,∴四邊形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),菱形的判定,相似三角形的性質(zhì)與判定,矩形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.5、(1)y=﹣;(2)點(diǎn)R的縱坐標(biāo)為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點(diǎn)C坐標(biāo)為(﹣1,3).【解析】【分析】(1)將點(diǎn)A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設(shè)點(diǎn)R的縱坐標(biāo)為n,則QN=|n|,分兩種情況,根據(jù)相似關(guān)系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點(diǎn)C在拋物線上,設(shè)其橫坐標(biāo)為m,然后用其分別表示出相關(guān)點(diǎn)的坐標(biāo),并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應(yīng)邊上的高之比也等于相似比,從而建立關(guān)于m的方程,解之,然后代回點(diǎn)C即可.【詳解】(1)將點(diǎn)A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達(dá)式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論