版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西延安市實驗中學7年級數學下冊第五章生活中的軸對稱專項練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列圖形中是軸對稱圖形的有()個A.1個 B.2個 C.3個 D.4個2、如圖,正方形網格中,A,B兩點均在直線a上方,要在直線a上求一點P,使PA+PB的值最小,則點P應選在()A.C點 B.D點 C.E點 D.F點3、如圖,將正方形圖案翻折一次,可以得到的圖案是()A. B. C. D.4、下列四個圖形中,不是軸對稱圖形的為()A. B. C. D.5、放風箏是我國人民非常喜愛的一項戶外娛樂活動,下列風箏剪紙作品中,不是軸對稱圖形的是()A. B.C. D.6、如圖,將一張長方形紙帶沿EF折疊,點C、D的對應點分別為C'、D'.若∠DEF=α,用含α的式子可以將∠C'FG表示為()A.2α B.90°+α C.180°﹣α D.180°﹣2α7、下列垃圾分類的標識中,是軸對稱圖形的是()A.①② B.③④ C.①③ D.②④8、如圖為某小區(qū)分類垃圾桶上的標識,其圖標部分可以看作軸對稱圖形的有()A.個 B.個 C.個 D.個9、如圖,直線、相交于點,為這兩條直線外一點,連接.點關于直線、的對稱點分別是點、.若,則點、之間的距離可能是()A. B. C. D.10、在一些美術字中,有的漢字是軸對稱圖形.下面?zhèn)€漢字中,可以看作是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在中,,點A關于的對稱點是,點B關于的對稱點是,點C關于的對稱點是,若,,則的面積是___________.2、如圖,如圖,∠AOB=45o,點M、N分別在射線OA、OB上,MN=7,△OMN的面積為14,P是直線MN上的動點,點P關于OA對稱的點為P1,點P關于OB對稱點為P2,當點P在直線NM上運動時,∠P1OP2=___°,△OP1P2的面積最小值為___.3、如圖,和關于直線對稱,若,則圖中陰影部分的面積為___.4、如圖,ABC與關于直線l對稱,則∠B的度數為__________.5、如圖所示,在△ABC中,∠BAC=60°,AD平分∠BAC交BC與點D,點P為邊AC上的一動點,連接PB、PD,若AB=AD=,則PB+PD的最小值為___.6、梯形(如圖)是有由一張長方形紙折疊而成的,這個梯形的面積是(______).7、如圖,在長方形ABCD中,AD=BC=5,AB=CD=12,AC=13,動點M在線段AC上運動(不與端點重合),點M關于邊AD,DC的對稱點分別為M1,M2,連接M1M2,點D在M1M2上,則在點M的運動過程中,線段M1M2長度的最小值是_______.8、正方形再任意涂黑一個,則所得黑色圖案是軸對稱圖形的情況有______種.9、如圖,與關于直線對稱,則∠B的度數為________°.10、如圖,點D、
E分別在ABC的AB、AC邊上,沿DE將ADE翻折,點A的對應點為點,∠EC=α,∠DB=β,且α<β,則∠A等于________(用含α、β表示).三、解答題(6小題,每小題10分,共計60分)1、如圖,方格紙中每個小方格都是邊長為1個單位的正方形,已知的三個頂點在格點上.(1)畫出,使它與關于直線a對稱;(2)求出的面積;(3)在直線a上畫出點P,使最小2、如圖,在長度為一個單位長度的小正方形組成的正方形網格中,ABC的各個頂點分別在小正方形的頂點上.(1)畫出ABC關于直線l對稱的A1B1C1;(2)求ABC的面積;3、如圖,方格子的邊長為1,△ABC的頂點在格點上.(1)畫出△ABC關于直線l對稱的△A1B1C1;(2)在直線l上找一點P,使PB+PC最小;(3)求△ABC的面積.4、如圖,在6×6的網格中已經涂黑了三個小正方形,請按下列要求畫圖.(1)在圖1中涂黑一塊小正方形,使涂黑的四個小正方形組成一個軸對稱圖形.(2)在圖2中涂黑兩塊小正方形,使涂黑的五個小正方形組成一個軸對稱圖形.5、如圖①、圖②、圖③都是3×3的正方形網格,每個小正方形的頂點稱為格點.A,B,C均為格點.在給定的網格中,按下列要求畫圖:(1)在圖①中,畫一條不與AB重合的線段MN,使MN與AB關于某條直線對稱,且M、N為格點;(2)在圖②中,畫一條不與AC重合的線段PQ,使PQ與AC關于某條直線對稱,且P,Q為格點;(3)在圖③中,畫一個△DEF,使△DEF與△ABC關于某條直線對稱,且D,E,F為格點.6、如圖,在正方形網格中,每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.網格中有一個格點△ABC(即三角形的頂點都在格點上).(1)在圖中畫出△A1B1C1,使它與△ABC關于直線l對稱;(2)在直線l上找一點P,使得PA+PC最?。唬?)△ABC的面積為.-參考答案-一、單選題1、B【分析】根據軸對稱圖形的定義:一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,則這個圖形就是軸對稱圖形,即可解答.【詳解】解:根據對稱軸的定義可知,是軸對稱圖形的有第1和第3個.故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、C【分析】取A點關于直線a的對稱點G,連接BG與直線a交于點E,點E即為所求.【詳解】解:如圖所示,取A點關于直線a的對稱點G,連接BG與直線a交于點E,點E即為所求,故選C.【點睛】本題主要考查了軸對稱最短路徑問題,解題的關鍵在于能夠熟練掌握軸對稱最短路徑的相關知識.3、B【分析】根據軸對稱的性質進行解答判斷即可.【詳解】解:利用軸對稱可得將正方形圖案翻折一次,可以得到的圖案是,故選:B.【點睛】本題考查了軸對稱的性質,熟練掌握軸對稱的定義與性質是解本題的關鍵.4、C【分析】根據軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;對各選項依次進行判斷即可.【詳解】解:選項A是等腰梯形,是軸對稱圖形,不合題意;選項B是等腰三角形是軸對稱圖形,不合題意;選項C是旋轉對稱圖圖形,不是軸對稱圖形,符合題意;選項D正五邊形是軸對稱圖形,不合題意;故選:C.【點睛】此題考查了軸對稱圖形的意義,判斷軸對稱圖形的關鍵是尋找對稱軸,看圖形對折后兩部分是否完全重合.5、B【分析】根據軸對稱圖形的概念求解.在平面內,如果一個圖形沿一條直線對折,對折后的兩部分都能完全重合,這樣的圖形叫做軸對稱圖形,這條直線就是其對稱軸.【詳解】解:A、是軸對稱圖形,故此選項不合題意;B、不是軸對稱圖形,故此選項符合題意;C、是軸對稱圖形,故此選項不合題意;D、是軸對稱圖形,故此選項不合題意.故選:B.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.6、D【分析】由平行線的性質得,,由折疊的性質得,計算即可得出答案.【詳解】∵四邊形ABCD是矩形,∴,∴,,∵長方形紙帶沿EF折疊,∴,∴.故選:D.【點睛】本題考查平行線的性質與折疊的性質,掌握平行線的性質以及折疊的性質是解題的關鍵.7、B【詳解】解:圖③和④是軸對稱圖形,故選:B.【點睛】本題考查了軸對稱圖形,熟記軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.8、B【詳解】解:第一個圖形可以看作軸對稱圖形,符合題意;第二個圖形不可以看作軸對稱圖形,不符合題意;第三個圖形可以看作軸對稱圖形,符合題意;第四個圖形不可以看作軸對稱圖形,不符合題意;故選:B.【點睛】本題考查的是軸對稱圖形的概念,解題的關鍵是掌握軸對稱圖形的對稱軸,圖形兩部分折疊后可重合.9、B【分析】由對稱得OP1=OP=3.5,OP=OP2=3.5,再根據三角形任意兩邊之和大于第三邊,即可得出結果.【詳解】連接,,,如圖:點關于直線,的對稱點分別是點,,,,,,故選:.【點睛】本題考查線軸對稱的性質以及三角形三邊關系,解本題的關鍵熟練掌握對稱性和三角形邊長的關系.10、A【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.利用軸對稱圖形的定義進行判斷即可.【詳解】解:A、是軸對稱圖形,故此選項符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、不是軸對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:A【點睛】此題主要考查了軸對稱圖形的定義,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.二、填空題1、18【分析】連接B′B,并延長交C′A′于點D,交AC于點E,再根據對稱的性質可知C′B=BC,A′B=BA,AC//A′C′,AC=A′C′,且BB′⊥AC,B′E=BE,得B′D=3BE,然后利用三角形面積公式可得到S△A′B′C′=3S△ABC.【詳解】解:連接B′B,并延長交C′A′于點D,交AC于點E,如圖,∵點B關于AC的對稱點是B',∴EB′=EB,BB′⊥AC,∵點C關于AB的對稱點是C',∴BC=BC′,∵點A關于BC的對稱點是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′D=3BE,∴S△A′B′C′=A′C′×B′E=3××BD×AC=3S△ABC.∵S△ABC=∴S△A′B′C′=故答案為18【點睛】本題考查了軸對稱的性質:如果兩個圖形關于某直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線.2、90°8【分析】連接OP,過點O作OH⊥NM交NM的延長線于H.首先利用三角形的面積公式求出OH,再證明△OP1P2是等腰直角三角形,OP最小時,△OP1P2的面積最?。驹斀狻拷猓哼B接OP,過點O作OH⊥NM交NM的延長線于H.∵S△OMN=?MN?OH=14,MN=7,∴OH=4,∵點P關于OA對稱的點為P1,點P關于OB對稱點為P2,∴∠AOP=∠AOP1,∠POB=∠P2OB,OP=OP1=OP2∵∠AOB=45°,∴∠P1OP2=2(∠POA+∠POB)=90°,∴△OP1P2是等腰直角三角形,∴OP=OP1最小時,△OP1P2的面積最小,根據垂線段最短可知,OP的最小值為4,∴△OP1P2的面積的最小值=×4×4=8,故答案為90°;8.【點睛】本題考查軸對稱,三角形的面積,垂線段最短等知識,解題的關鍵是證明△OP1P2是等腰直角三角形,屬于中考??碱}型.3、3【分析】根據對稱性可得陰影部分的面積為面積的一半,即可求解.【詳解】解:由和關于直線對稱可得,,陰影部分的面積為面積的一半即故答案為3.【點睛】此題考查了軸對稱的性質,熟練掌握軸對稱的性質是解題的關鍵.4、100°【分析】根據軸對稱的性質可得≌,再根據和的度數即可求出的度數.【詳解】解:∵與關于直線l對稱∴≌∴,∴故答案為:【點睛】本題主要考查了軸對稱的性質以及全等的性質,熟練掌握軸對稱的性質和全等的性質是解答此題的關鍵.5、【分析】作D關于AC的對稱點E,連接AE,BE,PE,由軸對稱的性質得,,PE=PD,∠DAP=∠EAP,則要想使PD+PB的值最小,則PB+PE的值最小,故當B、P、E三點共線時,PB+PE的值最小,即為PE,然后證明∠BAE=90°,即可利用勾股定理求解.【詳解】解:如圖所示,作D關于AC的對稱點E,連接AE,BE,PE,由軸對稱的性質得,,PE=PD,∠DAP=∠EAP,∴PB+PD=PB+PE,∴要想使PD+PB的值最小,則PB+PE的值最小,∴當B、P、E三點共線時,PB+PE的值最小,即為PE,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=∠DAP=∠EAP=30°,∴∠BAE=90°,∴,故答案為:.【點睛】本題主要考查了軸對稱最短路徑問題,角平分線的定義,勾股定理,解題的關鍵在于能夠根據題意作出輔助線求解.6、69【分析】通過觀察圖形可知,這個梯形上底是9cm,下底是(9+5)cm,高是6cm,根據梯形的面積公式:S=(a+b)h÷2,把數據代入公式解答【詳解】解:根據折疊可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)×6÷2=23×6÷2=138÷2=69()故答案為:69【點睛】此題主要考查梯形面積公式的靈活運用,關鍵是熟記公式7、【分析】過D作于,連接,根據題意可得,從而可以判定M1M2最小值為,即可求解.【詳解】解:過D作于,連接,如圖:長方形ABCD中,AD=BC=5,AB=CD=12,AC=13,∴∴,∵M關于邊AD,DC的對稱點分別為M1,M2,∴DM1=DM=DM2,∴,線段M1M2長度最小即是DM長度最小,此時DM⊥AC,即M與重合,M1M2最小值為.故答案為:.【點睛】此題考查了軸對稱的性質,掌握軸對稱的有關性質將的最小值轉化為的最小值是解題的關鍵.8、4【分析】利用軸對稱圖形定義進行補圖即可.【詳解】解:如圖所示:,共4種,故答案為:4.【點睛】此題主要考查了軸對稱圖形,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.9、105°【分析】根據軸對稱的性質,軸對稱圖形全等,則∠A=∠A′,∠B=∠B′,∠C=∠C′,再根據三角形內角和定理即可求得.【詳解】∵△ABC與△A′B′C′關于直線l對稱,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=∠C′=40°,∠A=∠A′=35°∴∠B=180°?35°?40°=105°.故答案為:105°.【點睛】本題考查了軸對稱圖形的性質,全等的性質,三角形內角和定理,理解軸對稱圖形的性質是解題的關鍵.10、【分析】根據翻轉變換的性質得到,,根據三角形的外角的性質計算,即可得到答案.【詳解】解:∵,∴由折疊的性質可知,,,設,∵,∴,解得:,∴,,故答案為:.【點睛】本題考查的是翻轉變換的性質,三角形的外角的性質,翻轉變換是一種對稱變換,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.三、解答題1、(1)見解析;(2);(3)見解析【分析】(1)分別作點A、B、C關于直線a的對稱點A1、B1、C1;順次連接A1、B1、C1所得的三角形即為所求.(2)用△ABC所在的矩形的面積減去三個小三角形的面積即可求解.(3)依據軸對稱的性質,連接C1A(或A1C)與直線a交于點P即可.【詳解】(1)如圖,△A1B1C1即為所求.(2)=2×2-×1×2×2-×1×1=.(3)如圖,連接C1A(或A1C)與直線a交于點P,則點P即為所求.【點睛】考查了根據軸對稱變換作圖,解答本題的關鍵是根據網格結構作出對應點的位置,然后順次連接.2、(1)見解析;(2)5【分析】(1)根據對稱的性質得出ABC的對應點,連接即可;(2)直接運用ABC所在矩形面積減去ABC周圍三個直角三角形的面積即可.【詳解】解:(1)如圖所示,△A1B1C1即為所求;(2)△ABC的面積為3×4﹣×1×3×2-×2×4=5.【點睛】本題考查了軸對稱-作圖,三角形的面積,根據題意作出ABC的對稱圖形是解本題的關鍵.3、(1)見解析;(2)見解析;(3)【分析】(1)利用網格特點和軸對稱的性質畫出A、B、C關于直線l的對稱點A1、B1、C1即可;(2)連接CB1交直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沉井泵房施工方案(3篇)
- 2026江蘇無錫市錫山區(qū)教育系統(tǒng)招聘青年人才120人備考考試試題及答案解析
- 冬季主題策劃活動方案(3篇)
- 超市晚場活動方案策劃(3篇)
- 實體餐飲活動策劃方案(3篇)
- 2026廣東省疾病預防控制中心招聘科研助理2人備考考試試題及答案解析
- 2026廣西來賓市第一中學招聘編外教師2人備考考試試題及答案解析
- 2026云南師范大學實驗中學巫家壩校區(qū)招聘7人備考考試題庫及答案解析
- 2026年荊州市中心城區(qū)企業(yè)(民辦高校)引進人才780人備考考試題庫及答案解析
- 2026河北省某省級三甲醫(yī)院現誠招肝病科醫(yī)師備考考試題庫及答案解析
- 江南大學介紹
- 近五年甘肅中考物理試題及答案2025
- 兒科氧療護理實踐指南(2025年版)
- 康養(yǎng)中心規(guī)范化管理制度
- TCTA 011-2026 智能水尺觀測系統(tǒng)操作規(guī)程
- 科學規(guī)劃高三寒假:沖刺高考的最后蓄力
- 重金屬環(huán)境安全隱患排查評估整治技術指南(試行)
- 高空作業(yè)合同范本
- GB/T 5785-2025緊固件六角頭螺栓細牙
- 輸電線路巡視
- 《生活垃圾填埋場環(huán)境風險評估技術指南》
評論
0/150
提交評論